646 resultados para Mycoplasma pneumoniae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-TO determine whether commercial Mycoplasma hyopneumoniae bacterins sold for use in swine contain porcine torque teno virus (TTV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tigecycline resistance in Klebsiella pneumoniae results from ramA upregulation that causes the overexpression of the efflux pump, AcrAB-TolC. Tigecycline mutants, derived from Ecl8?ramA, can exhibit a multidrug resistance phenotype due to increased transcription of the marA, rarA, acrAB, and oqxAB genes. These findings support the idea that tigecycline or multidrug resistance in K. pneumoniae, first, is not solely dependent on the ramA gene, and second, can arise via alternative regulatory pathways in K. pneumoniae. © 2012, American Society for Microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 microg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was >or=0.5 microg/ml harbored a mutation in DNA gyrase A (Ser83-->Tyr, Leu, or IIe), and some had a secondary Asp87-->Asn mutation. Isolates for which the MIC was 16 microg/ml possessed an additional alteration in ParC (Ser80-->IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the genome sequence of Klebsiella pneumoniae subsp. pneumoniae Ecl8, a spontaneous streptomycin-resistant mutant of strain ECL4, derived from NCIB 418. K. pneumoniae Ecl8 has been shown to be genetically tractable for targeted gene deletion strategies and so provides a platform for in-depth analyses of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RarA is an AraC-type regulator in Klebsiella pneumoniae, which, when overexpressed, confers a low-level multidrug-resistant (MDR) phenotype linked to the upregulation of both the acrAB and oqxAB efflux genes. Increased rarA expression has also been shown to be integral in the development of tigecycline resistance in the absence of ramA in K. pneumoniae. Given its phenotypic role in MDR, microarray analyses were performed to determine the RarA regulon. Transcriptome analysis was undertaken using strains Ecl8?rarA/pACrarA-2 (rarA-expressing construct) and Ecl8?rarA/pACYC184 (vector-only control) using bespoke microarray slides consisting of probes derived from the genomic sequences of K. pneumoniae MGH 78578 (NC_009648.1) and Kp342 (NC_011283.1). Our results show that rarA overexpression resulted in the differential expression of 66 genes (42 upregulated and 24 downregulated). Under the COG (clusters of orthologous groups) functional classification, the majority of affected genes belonged to the category of cell envelope biogenesis and posttranslational modification, along with genes encoding the previously uncharacterized transport proteins (e.g., KPN_03141, sdaCB, and leuE) and the porin OmpF. However, genes associated with energy production and conversion and amino acid transport/metabolism (e.g., nuoA, narJ, and proWX) were found to be downregulated. Biolog phenotype analyses demonstrated that rarA overexpression confers enhanced growth of the overexpresser in the presence of several antibiotic classes (i.e., beta-lactams and fluoroquinolones), the antifungal/antiprotozoal compound clioquinol, disinfectants (8-hydroxyquinoline), protein synthesis inhibitors (i.e., minocycline and puromycin), membrane biogenesis agents (polymyxin B and amitriptyline), DNA synthesis (furaltadone), and the cytokinesis inhibitor (sanguinarine). Both our transcriptome and phenotypic microarray data support and extend the role of RarA in the MDR phenotype of K. pneumoniae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro-inflammatory mediators-induced IL-8 secretion. Klebsiella antagonizes the activation of NF-?B via the deubiquitinase CYLD and blocks the phosphorylation of mitogen-activated protein kinases (MAPKs) via the MAPK phosphatase MKP-1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti-inflammatory effect, Klebsiella engages NOD1. In NOD1 knock-down cells, Klebsiella neither induces the expression of CYLD and MKP-1 nor blocks the activation of NF-?B and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1-mediated CYLD and MKP-1 expression which in turn attenuates IL-1ß-induced IL-8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL-1ß-induced IL-8 secretion nor induces the expression of CYLD and MKP-1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-?wca ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfa, kc, and il6 than the wild type. ompA mutants activated NF-?B, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-?B-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-?B, whereas 52145-?wca ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis. © 2013 March et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NF-kB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early in?ammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-kB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identi?ed 17 kinases that when targeted by siRNA restored IL-1b-dependent NF-kB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)- phosphatidylinositol 3-OH kinase (PI3K)–AKT–PAK4–ERK–GSK3b signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-kB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR–
PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. Our efforts to identify the bacterial factor(s) responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence
suggesting that CPS could mediate the activation of EGFR. Supporting this notion, puri?ed CPS did activate EGFR as well as the EGFR-dependent PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4–MyD88–c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (APs) impose a threat to the survival of pathogens, and it is reasonable to postulate that bacteria have developed strategies to counteract them. Polymyxins are becoming the last resort to treat infections caused by multidrug-resistant Gram-negative bacteria and, similar to APs, they interact with the anionic lipopolysaccharide. Given that polymyxins and APs share the initial target, it is possible that bacterial defense mechanisms against polymyxins will be also effective against host APs. We sought to determine whether exposure to polymyxin will increase Klebsiella pneumoniae resistance to host APs. Indeed, exposure of K. pneumoniae to polymyxin induces cross-resistance not only to polymyxin itself but also to APs present in the airways. Polymyxin treatment upregulates the expression of the capsule polysaccharide operon and the loci required to modify the lipid A with aminoarabinose and palmitate with a concomitant increase in capsule and lipid A species containing such modifications. Moreover, these surface changes contribute to APs resistance and also to polymyxin-induced cross-resistance to APs. Bacterial loads of lipid A mutants in trachea and lungs of intranasally infected mice were lower than those of wild-type strain. PhoPQ, PmrAB, and the Rcs system govern polymyxin-induced transcriptional changes, and there is a cross talk between PhoPQ and the Rcs system. Our findings support the notion that Klebsiella activates a defense program against APs that is controlled by three signaling systems. Therapeutic strategies directed to prevent the activation of this program could be a new approach worth exploring to facilitate the clearance of the pathogen from the airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and antibody deficiency to both T dependent and independent antigens. Patients suffer from recurrent sinopulmonary infections mostly caused by Streptococcus pneumoniae and Haemophilus influenzae, but also gastrointestinal or autoimmune symptoms. Their response to vaccination is poor or absent. In this study we investigated B cell activation induced by the TLR9 specific ligand (CpG-ODN) and bacterial extracts from S. pneumoniae and H. influenzae known to stimulate several TLR. We found that B cells from CVID patients express lower levels of CD86 after stimulation with CpG-ODN, S. pneumoniae and H. influenzae extracts in combination with anti-IgM antibody and also display a lower proliferative index when stimulated with bacterial extracts. Our results point to a broad TLR signalling defect in B lymphocytes from CVID patients that may be related to the hypogammaglobulinaemia and poor response to vaccination characteristic of these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.