936 resultados para Mycobacterium tuberculosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon-optimized gfpm2+ gene, coding for GFPm2+ of highest fluorescence reported till date, mycobacteriophage L5 attP-int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFPm2+ from M. tuberculosis and M. smegmatis genome. Expression of GFPm2+, driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2-promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome-integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long-term in vitro growth or stress conditions, or inside macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray structures of new crystal forms of peptidyl-tRNA hydrolase from M.similar to tuberculosis reported here and the results of previous X-ray studies of the enzyme from different sources provide a picture of the functionally relevant plasticity of the protein molecule. The new X-ray results confirm the connection deduced previously between the closure of the lid at the peptide-binding site and the opening of the gate that separates the peptide-binding and tRNA-binding sites. The plasticity of the molecule indicated by X-ray structures is in general agreement with that deduced from the available solution NMR results. The correlation between the lid and the gate movements is not, however, observed in the NMR structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods: Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-gamma production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results: We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-alpha and IFN-gamma) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions: PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative `Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed `3interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although sequencing of Mycobacterium tuberculosis genome lead to better understanding of transcription units and gene functions, interactions occurring during transcription initiation between RNA polymerase and promoters is yet to be elucidated. Different stages of transcription initiation include promoter specific binding of RNAP, isomerization, abortive initiation and promoter clearance. We have now analyzed these events with four promoters of M. tuberculosis viz. P-gyrB1, P-gyrR, P-rrnPCL1 and P-metU. The promoters differed from each other in their rates of open complex formation, decay, promoter clearance and abortive transcription. The equilibrium binding and kinetic studies of various steps revealed distinct rate limiting events for each of the promoter, which also differed markedly in their characteristics from the respective promoters of Mycobacterium smegmatis. Surprisingly, the transcription at gyr promoter was enhanced in the presence of initiating nucleotides and decreased in the presence of alarmone, pppGpp, a pattern typically seen with rRNA promoters studied so far. The gyr promoter of M. smegmatis, on the other hand, was not subjected to pppGpp mediated regulation. The marked differences in the transcription initiation pathway seen with rrn and gyr promoters of M. smegmatis and M. tuberculosis suggest that such species specific differences in the regulation of expression of the crucial housekeeping genes could be one of the key determinants contributing to the differences in growth rate and lifestyle of the two organisms. Moreover, the distinct rate limiting steps during transcription initiation of each one of the promoters studied point at variations in their intracellular regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coil, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP. GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type I DNA topoisomerases from bacteria catalyse relaxation of negatively supercoiled DNA in a Mg2+ dependent manner. Although topoisomerases of distinct classes have been subjected for anti-cancer and anti-infective drug development, bacterial type I enzymes are way behind in this regard. Our studies with Mycobacterium smegmatis topoisomerase I (MstopoI) revealed several of its distinct properties compared to the well studied Escherichia coli topoisomerase I (EctopoI) suggesting the possibility of targeting the mycobacterial enzyme for inhibitor development. Here, we describe Mycobacterium tuberculosis topoisomerase I (MttopoI) and compare its properties with MstopoI and EctopoI. The enzyme cleaves DNA at preferred sites in a pattern similar to its ortholog from M. smegmatis. Oligonucleotides containing the specific recognition sequence inhibited the activity of the enzyme in a manner similar to that of MstopoI. Substitution of the acidic residues, D111 and E115 which are involved in Mg2+ co-ordination, to alanines affected the DNA relaxation activity. Unlike the wild type enzyme, D111A was dependent on Mg2+ for DNA cleavage and both the mutants were compromised in religation. The monoclonal antibody (mAb), 2F3G4, developed against MstopoI inhibited the relaxation activity of MttopoI. These studies affirm the characteristics of MttopoI to be similar to MstopoI and set a stage to target it for the development of specific small molecule inhibitors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (K-m and V-max) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria use a number of small basic proteins for organization and compaction of their genomes. By their interaction with DNA, these nucleoid-associated proteins (NAPs) also influence gene expression. Rv3852, a NAP of Mycobacterium tuberculosis, is conserved among the pathogenic and slow-growing species of mycobacteria. Here, we show that the protein predominantly localizes in the cell membrane and that the carboxy-terminal region with the propensity to form a transmembrane helix is necessary for its membrane localization. The protein is involved in genome organization, and its ectopic expression in Mycobacterium smegmatis resulted in altered nucleoid morphology, defects in biofilm formation, sliding motility, and change in apolar lipid profile. We demonstrate its crucial role in regulating the expression of KasA, KasB, and GroEL1 proteins, which are in turn involved in controlling the surface phenotypes in mycobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.