997 resultados para Multilevel Graph Partitioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we look at JOSTLE, the multilevel graph-partitioning software package, and highlight some of the key research issues that it addresses. We first outline the core algorithms and place it in the context of the multilevel refinement paradigm. We then look at issues relating to its use as a tool for parallel processing and, in particular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used for many mesh-based parallel scientific computing applications and so we also outline some enhancements such as multiphase mesh-partitioning, heterogeneous mapping and partitioning to optimise subdomain shape

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three parallel optimisation algorithms, for use in the context of multilevel graph partitioning of unstructured meshes, are described. The first, interface optimisation, reduces the computation to a set of independent optimisation problems in interface regions. The next, alternating optimisation, is a restriction of this technique in which mesh entities are only allowed to migrate between subdomains in one direction. The third treats the gain as a potential field and uses the concept of relative gain for selecting appropriate vertices to migrate. The results are compared and seen to produce very high global quality partitions, very rapidly. The results are also compared with another partitioning tool and shown to be of higher quality although taking longer to compute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimization techniques that address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimization method that refines the partition at each graph level. To date, these algorithms have been used almost exclusively to minimize the cut-edge weight in the graph with the aim of minimizing the parallel communication overhead. However, it has been shown that for certain classes of problems, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. Therefore, in this paper, the authors modify the multilevel algorithms to optimize a cost function based on the aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for distributing unstructured meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut edge weight in the graph with the aim of minimising the parallel communication overhead, but recently there has been a perceived need to take into account the communications network of the parallel machine. For example the increasing use of SMP clusters (systems of multiprocessor compute nodes with very fast intra-node communications but relatively slow inter-node networks) suggest the use of hierarchical network models. Indeed this requirement is exacerbated in the early experiments with meta-computers (multiple supercomputers combined together, in extreme cases over inter-continental networks). In this paper therefore, we modify a multilevel algorithm in order to minimise a cost function based on a model of the communications network. Several network models and variants of the algorithm are tested and we establish that it is possible to successfully guide the optimisation to reflect the chosen architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite significant advances in recent years, structure-from-motion (SfM) pipelines suffer from two important drawbacks. Apart from requiring significant computational power to solve the large-scale computations involved, such pipelines sometimes fail to correctly reconstruct when the accumulated error in incremental reconstruction is large or when the number of 3D to 2D correspondences are insufficient. In this paper we present a novel approach to mitigate the above-mentioned drawbacks. Using an image match graph based on matching features we partition the image data set into smaller sets or components which are reconstructed independently. Following such reconstructions we utilise the available epipolar relationships that connect images across components to correctly align the individual reconstructions in a global frame of reference. This results in both a significant speed up of at least one order of magnitude and also mitigates the problems of reconstruction failures with a marginal loss in accuracy. The effectiveness of our approach is demonstrated on some large-scale real world data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. In this paper, we adopt a different approach, based on estimating the isoperimetric constant of an image graph. Our algorithm produces the high quality segmentations and data clustering of spectral methods, but with improved speed and stability.