989 resultados para Molecular probe technics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of solid-state NMR techniques is used to characterise a molecular host:guest complex consisting of a [5]polynorbornane bisurea host binding a terephthalate dianion guest. Detailed information is obtained on the molecular dynamics and associations from the point of view of both the host and guest molecules. The formation of the complex in the solid state is confirmed using (1)H 2D exchange NMR, and the 180° flipping of the (2)H-labelled terephthalate guest and its eventual expulsion from the complex at elevated temperatures are quantified using variable-temperature (2)H spin-echo experiments. Two-dimensional (1)H-(13)C HETCOR spectra obtained under fast magic angle spinning conditions (60 kHz) show a high resolution despite the poor crystallinity of the solid complex, and clearly reveal changes in the rigidity of the host molecule when complexed. Short-range intra- and intermolecular (1)H-(1)H proximities are also detected using 2D SQ-DQ correlation methods, providing insight into the molecular packing in the solid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral natrodufrénite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)∑1.00(Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)∑0.97(Al0.02)∑4.91(PO4)3.96(OH6.15F0.07)6.22⋅2.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm−1 assigned to the ν1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm−1 and are attributed to the ν3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm−1 are assigned to the ν4 bending modes and Raman bands at 425, 444, 477 and 507 cm−1 are due to the ν2 bending modes. Raman bands in the 2600–3800 cm−1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrénite to be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral leightonite, a rare sulphate mineral of formula K2Ca2Cu(SO4)4.2H2O, has been studied using a combination of electron probe and vibrational spectroscopy. The mineral is characterized by an intense Raman band at 991 cm-1 attributed to the SO2- 4 m1 symmetric stretching mode. A series of Raman bands at 1047, 1120, 1137, 1163 and 1177 cm-1 assigned to the SO2- 4 m3 antisymmetric stretching modes. The observation of multiple bands shows that the symmetry of the sulphate anion is reduced. Multiple Raman and infrared bands in the OH stretching region shows that water in the structure of leightonite is in a range of molecular environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The orientational distribution of a set of stable nitroxide radicals in aligned liquid crystals 5CB (nematic) and 8CB (smectic A) was studied in detail by numerical simulation of EPR spectra. The order parameters up to the 10th rank were measured. The directions of the principal orientation axes of the radicals were determined. It was shown that the ordering of the probe molecules is controlled by their interaction with the matrix molecules more than the inherent geometry of the probes themselves. The rigid fused phenanthrene-based (A5) and 2-azaphenalene (A4) nitroxides as well as the rigid core elongated C11 and 5α-cholestane (CLS) nitroxides were found to be most sensitive to the orientation of the liquid crystal matrixes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule−substrate interface states and the controlled patterning of molecular overlayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.