938 resultados para Molecular and Cellular Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the plakoglobin (JUP) gene have been identified in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients. However, the mechanisms underlying plakoglobin dysfunction involved in the pathogenesis of ARVC remain poorly understood. Plakoglobin is a component of both desmosomes and adherens junctions located at the intercalated disc (ICD) of cardiomyocytes, where it functions to link cadherins to the cytoskeleton. In addition, plakoglobin functions as a signaling protein via its ability to modulate the Wnt/beta-catenin signaling pathway. To investigate the role of plakoglobin in ARVC, we generated an inducible cardiorestricted knockout (CKO) of the plakoglobin gene in mice. Plakoglobin CKO mice exhibited progressive loss of cardiac myocytes, extensive inflammatory infiltration, fibrous tissue replacement, and cardiac dysfunction similar to those of ARVC patients. Desmosomal proteins from the ICD were decreased, consistent with altered desmosome ultrastructure in plakoglobin CKO hearts. Despite gap junction remodeling, plakoglobin CKO hearts were refractory to induced arrhythmias. Ablation of plakoglobin caused increase beta-catenin stabilization associated with activated AKT and inhibition of glycogen synthase kinase 3beta. Finally, beta-catenin/TCF transcriptional activity may contribute to the cardiac hypertrophy response in plakoglobin CKO mice. This novel model of ARVC demonstrates for the first time how plakoglobin affects beta-catenin activity in the heart and its implications for disease pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While it is well known that clear cell renal cell carcinoma (ccRCC) that presents with lymphatic spread is associated with an extremely poor prognosis, its molecular and genetic biology is poorly understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mRNA stabilizing factor HuR is involved in the posttranscriptional regulation of many genes, including that coding for cyclooxygenase 2 (COX-2). Employing RNA interference technology and actinomycin D experiments, we demonstrate that in human mesangial cells (hMC) the amplification of cytokine-induced COX-2 by angiotensin II (AngII) occurs via a HuR-mediated increase of mRNA stability. Using COX-2 promoter constructs with different portions of the 3' untranslated region of COX-2, we found that the increase in COX-2 mRNA stability is attributable to a distal class III type of AU-rich element (ARE). Likewise, the RNA immunoprecipitation assay showed AngII-induced binding of HuR to this ARE. Using the RNA pulldown assay, we demonstrate that the AngII-caused HuR assembly with COX-2 mRNA is found in free and cytoskeleton-bound polysomes indicative of an active RNP complex. Mechanistically, the increased HuR binding to COX-2-ARE by AngII is accompanied by increased nucleocytoplasmic HuR shuttling and depends on protein kinase Cdelta (PKCdelta), which physically interacts with nuclear HuR, thereby promoting its phosphorylation. Mapping of phosphorylation sites identified serines 221 and 318 as critical target sites for PKCdelta-triggered HuR phosphorylation and AngII-induced HuR export to the cytoplasm. Posttranslational modification of HuR by PKCdelta represents an important novel mode of HuR activation implied in renal COX-2 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tenomodulin (Tnmd) is a member of a new family of type II transmembrane glycoproteins. It is predominantly expressed in tendons, ligaments, and eyes, whereas the only other family member, chondromodulin I (ChM-I), is highly expressed in cartilage and at lower levels in the eye and thymus. The C-terminal extracellular domains of both proteins were shown to modulate endothelial-cell proliferation and tube formation in vitro and in vivo. We analyzed Tnmd function in vivo and provide evidence that Tnmd is processed in vivo and that the proteolytically cleaved C-terminal domain can be found in tendon extracts. Loss of Tnmd expression in gene targeted mice abated tenocyte proliferation and led to a reduced tenocyte density. The deposited amounts of extracellular matrix proteins, including collagen types I, II, III, and VI and decorin, lumican, aggrecan, and matrilin-2, were not affected, but the calibers of collagen fibrils varied significantly and exhibited increased maximal diameters. Tnmd-deficient mice did not have changes in tendon vessel density, and mice lacking both Tnmd and ChM-I had normal retinal vascularization and neovascularization after oxygen-induced retinopathy. These results suggest that Tnmd is a regulator of tenocyte proliferation and is involved in collagen fibril maturation but do not confirm an in vivo involvement of Tnmd in angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in Saccharomyces cerevisiae, this has not been confirmed experimentally. This study demonstrates for the first time that Mre11 (Schizosaccharomyces pombe Rad32(Mre11)) nuclease activity is required for the removal of Rec12(Spo11). Furthermore, we show that the CtIP homologue Ctp1 is required for Rec12(Spo11) removal, confirming functional conservation between Ctp1(CtIP) and the more distantly related Sae2 protein from Saccharomyces cerevisiae. Finally, we show that the MRN complex is required for meiotic recombination, chromatin remodeling at the ade6-M26 recombination hot spot, and formation of linear elements (which are the equivalent of the synaptonemal complex found in other eukaryotes) but that all of these functions are proficient in a rad50S mutant, which is deficient for Rec12(Spo11) removal. These observations suggest that the conserved role of the MRN complex in these meiotic functions is independent of Rec12(Spo11) removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.