983 resultados para Moderate exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical exercise is known to enhance brain function in several aspects. We evaluated the acute effects of a moderate forced exercise protocol on synaptic proteins, namely synapsin 1 (SYN) and synaptophysin (SYP), and structural proteins (neurofilaments, NFs) in rat brain regions related to motor function and often affected by neurodegenerative disorders. Immunohistochemistry, Western blotting and real-time PCR were used to analyze the expression of those proteins after 3, 7 and 15 days of exercise (EX3, EX7 and EX15). In the cerebellum, increase of SYN was observed at EX7 and EX15 and of NF68 at EX3. In the substantia nigra, increases of protein levels were observed for NF68 and NF160 at EX3. In the striatum, there was an increase of SYN at EX3 and EX7, of SYP at EX7 and of NF68 at EX3. In the cortex, decreased levels of NF68 and NF160 were observed at EX3, followed by an increase of NF68 at EX15. In the reticular formation, all NF proteins were increased at EX15. The mRNA data for each time-point and region also revealed significant exercise-related changes of SYN, SYP and NF expression. These results suggest that moderate physical exercise modulates synaptic and structural proteins in motor brain areas, which may play an important role in the exercise-dependent brain plasticity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO(2max), 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-alpha (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2 alpha/beta) (9%), interleukin (IL)-1 beta (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

# 1.
To evaluate the role of adrenaline in regulating carbohydrate metabolism during moderate exercise, 10 moderately trained men completed two 20 min exercise bouts at 58 ± 2 % peak pulmonary oxygen uptake (̇Vo2,peak). On one occasion saline was infused (CON), and on the other adrenaline was infused intravenously for 5 min prior to and throughout exercise (ADR). Glucose kinetics were measured by a primed, continuous infusion of 6,6-[2H]glucose and muscle samples were obtained prior to and at 1 and 20 min of exercise.

# 2.
The infusion of adrenaline elevated (P < 0.01) plasma adrenaline concentrations at rest (pre-infusion, 0.28 ± 0.09; post-infusion, 1.70 ± 0.45 nmol l−1; means ±s.e.m.) and this effect was maintained throughout exercise. Total carbohydrate oxidation increased by 18 % and this effect was due to greater skeletal muscle glycogenolysis (P < 0.05) and pyruvate dehydrogenase (PDH) activation (P < 0.05, treatment effect). Glucose rate of appearance was not different between trials, but the infusion of adrenaline decreased (P < 0.05, treatment effect) skeletal muscle glucose uptake in ADR.

# 3.
During exercise muscle glucose 6-phosphate (G-6-P) (P = 0.055, treatment effect) and lactate (P < 0.05) were elevated in ADR compared with CON and no changes were observed for pyruvate, creatine, phosphocreatine, ATP and the calculated free concentrations of ADP and AMP.

# 4.
The data demonstrate that elevated plasma adrenaline levels during moderate exercise in untrained men increase skeletal muscle glycogen breakdown and PDH activation, which results in greater carbohydrate oxidation. The greater muscle glycogenolysis appears to be due to increased glycogen phosphorylase transformation whilst the increased PDH activity cannot be readily explained. Finally, the decreased glucose uptake observed during exercise in ADR is likely to be due to the increased intracellular G-6-P and a subsequent decrease in glucose phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is very known that due to inflammatory processes the obesity leads to resistance to leptin, it reduces phosphorylation via JAK-2/STAT-3, which generates lower STAT-3 activity in the cell nucleus, and it leads to decrease the number of transcription of anorexigenic neurons (POMC/CART) and allowing transcription of orexigenic (NPY/AgRP). PURPOSE: The present study aimed to evaluate the effects of moderate aerobic training on food intake of obese mice through analysis of activity of hypothalamic proteins JAK-2/STAT-3. METHODS: It were used 30 Swiss mice (30 days old) divided into 3 groups: Control Group (C): sedentary animals fed with balanced diet ; Obese (OB) sedentary animals fed with high-fat diet throughout the experiment and Trained Obese (TOB) : animals fed with high fat diet throughout the experiment , kept sedentary during the first half of the experiment (8 weeks) and submitted to physical training protocol during the second half of the experiment (8 weeks). The exercise program consisted of treadmill running 1h, 5 days/week during 8 weeks at a speed equivalent to 60 % of maximum potency determined at the beginning of training period. To assess the leptin resistance, after rats were deprived of food for 6h with free access to water, they received i.p injection with leptin (2.0µl, 10-6M), after this, the chow was returned and food intake was determined by measuring the quantity and Kcal consumed at the end of 2h. The hypothalami was removed for determination of JAK-2 and STAt-3 activity. RESULTS: Our results showed that moderate physical exercise was effective in improving the JAK/STAT signaling pathway in the hypothalamus of obese animals. This has made these obese animals had reduced food intake and consequently lower body mass gain. CONCLUSION: It can be concluded that physical exercise, for restoring leptin signaling in the hypothalamus, controls the synthesis of neurons responsible for appetite and thus is an important tool in the treatment of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

de Araujo CC, Silva JD, Samary CS, Guimaraes IH, Marques PS, Oliveira GP, do Carmo LGRR, Goldenberg RC, Bakker-Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Pelosi P, Rocco PRM. Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. J Appl Physiol 112: 1206-1214, 2012. First published January 19, 2012; doi:10.1152/japplphysiol.01061.2011.-Physical activity modulates inflammation and immune response in both normal and pathologic conditions. We investigated whether regular and moderate exercise before the induction of experimental sepsis reduces the risk of lung and distal organ injury and survival. One hundred twenty-four BALB/c mice were randomly assigned to two groups: sedentary (S) and trained (T). Animals in T group ran on a motorized treadmill, at moderate intensity, 5% grade, 30 min/day, 3 times a week for 8 wk. Cardiac adaptation to exercise was evaluated using echocardiography. Systolic volume and left ventricular mass were increased in T compared with S group. Both T and S groups were further randomized either to sepsis induced by cecal ligation and puncture surgery (CLP) or sham operation (control). After 24 h, lung mechanics and histology, the degree of cell apoptosis in lung, heart, kidney, liver, and small intestine villi, and interleukin (IL)-6, KC (IL-8 murine functional homolog), IL-1 beta, IL-10, and number of cells in bronchoalveolar lavage (BALF) and peritoneal lavage (PLF) fluids as well as plasma were measured. In CLP, T compared with S groups showed: 1) improvement in survival; 2) reduced lung static elastance, alveolar collapse, collagen and elastic fiber content, number of neutrophils in BALF, PLF, and plasma, as well as lung and distal organ cell apoptosis; and 3) increased IL-10 in BALF and plasma, with reduced IL-6, KC, and IL-1 beta in PLF. In conclusion, regular and moderate exercise before the induction of sepsis reduced the risk of lung and distal organ damage, thus increasing survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the magnitude of 20-min moderate exercise-induced platelet activation in 50 volunteers with normal (n=31) or elevated blood pressure (EBP; n=19). Blood was drawn before, immediately after, and 25 min after exercise. Antibody-staining for platelet activation markers, P-selectin, and fibrinogen receptors was done with and without adenosine diphosphate (ADP) stimulation in whole blood for flow cytometric analyses. Exercise led to increases in percent aggregated platelets and percent platelets expressing P-selectin or PAC-1 binding (ps< or =.001). This increase in percent platelets expressing P-selectin continued even after a 25-min rest only in the EBP group (p< or =.01) accompanied by an increase in percent of aggregated platelets (p< or =.05). Although ADP stimulation led to increased platelet activation at rest, it was attenuated following exercise, even among EBP individuals. A moderate exercise challenge induced prolonged platelet activation in individuals with EBP but attenuation in activation to further stimulation by an agonist. Findings suggest that a recovery period after physical stress appears critical in individuals with high BP regarding platelet activation and aggregation, which can lead to an acute coronary syndrome in vulnerable individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary nitrate (NO3−) supplementation with beetroot juice (BR) over 4–6 days has been shown to reduce the O2 cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO3− supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO3−/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state V̇o2 during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO3− supplementation acutely reduces BP and the O2 cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The aim of this study was to determine the feasibility of a combined supervised and home-based exercise intervention during chemotherapy for women with recurrent ovarian cancer. Secondary aims were to determine the impact of physical activity on physical and psychological outcomes and on chemotherapy completion rates. Methods: Women with recurrent ovarian cancer were recruited from 3 oncology outpatient clinics in Sydney and Canberra, Australia. All participants received an individualized exercise program that consisted of 90 minutes or more of low to moderate aerobic, resistance, core stability, and balance exercise per week, for 12 weeks. Feasibility was determined by recruitment rate, retention rate, intervention adherence, and adverse events. Aerobic capacity, muscular strength, fatigue, sleep quality, quality of life, depression, and chemotherapy completion rates were assessed at weeks 0, 12, and 24. Results: Thirty participants were recruited (recruitment rate, 63%), with a retention rate of 70%. Participants averaged 196 ± 138 min · wk of low to moderate physical activity throughout the intervention, with adherence to the program at 81%. There were no adverse events resulting from the exercise intervention. Participants who completed the study displayed significant improvements in quality of life (P = 0.017), fatigue (P = 0.004), mental health (P = 0.007), muscular strength (P = 0.001), and balance (P = 0.003) after the intervention. Participants completing the intervention had a higher relative dose intensity than noncompleters (P = 0.03). Conclusions: A program consisting of low to moderate exercise of 90 min · wk was achieved by two-thirds of women with recurrent ovarian cancer in this study, with no adverse events reported. Randomized control studies are required to confirm the benefits of exercise reported in this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis - It is not known whether the beneficial effects of exercise training on insulin sensitivity are due to changes in hepatic and peripheral insulin sensitivity or whether the changes in insulin sensitivity can be explained by adaptive changes in fatty acid metabolism, changes in visceral fat or changes in liver and muscle triacylglycerol content. We investigated the effects of 6 weeks of supervised exercise in sedentary men on these variables. Subjects and methods - We randomised 17 sedentary overweight male subjects (age 50 ± 2.6 years, BMI 27.6 ± 0.5 kg/m2) to a 6-week exercise programme (n = 10) or control group (n = 7). The insulin sensitivity of palmitic acid production rate (Ra), glycerol Ra, endogenous glucose Ra (EGP), glucose uptake and glucose metabolic clearance rate were measured at 0 and 6 weeks with a two-step hyperinsulinaemic–euglycaemic clamp [step 1, 0.3 (low dose); step 2, 1.5 (high dose) mU kg−1 min−1]. In the exercise group subjects were studied >72 h after the last training session. Liver and skeletal muscle triacylglycerol content was measured by magnetic resonance spectroscopy and visceral adipose tissue by cross-sectional computer tomography scanning. Results - After 6 weeks, fasting glycerol, palmitic acid Ra (p = 0.003, p = 0.042) and NEFA concentration (p = 0.005) were decreased in the exercise group with no change in the control group. The effects of low-dose insulin on EGP and of high-dose insulin on glucose uptake and metabolic clearance rate were enhanced in the exercise group but not in the control group (p = 0.026; p = 0.007 and p = 0.04). There was no change in muscle triacylglycerol and liver fat in either group. Conclusions/interpretation - Decreased availability of circulating NEFA may contribute to the observed improvement in the insulin sensitivity of EGP and glucose uptake following 6 weeks of moderate exercise.