948 resultados para Models, Theoretical*


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article examined the issue of whether or not the currency exchange rate, country risk, and cooperate tax rate affect decisions of multinational firms to invest in industrial clusters. First, if the exchange rate between a multinational company in an industry of diminishing returns to scale and a developing country is appreciated, then production in the developing country should increase. Second, if the investment period becomes longer, the currency exchange rate of a multinational company's country should be revalued more in order for it to further invest in the developing country. Third, if the investment period becomes longer, the developing country's risk should become less. Fourth, compensation for the developing country's high risk can be made by lowering its corporate tax rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to improve the body of knowledge about brain injury impairment is essential to develop image database with different types of injuries. This paper proposes a new methodology to model three types of brain injury: stroke, tumor and traumatic brain injury; and implements a system to navigate among simulated MRI studies. These studies can be used on research studies, to validate new processing methods and as an educational tool, to show different types of brain injury and how they affect to neuroanatomic structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the relative fit of both Finn's (1989) Participation-Identification and Wehlage, Rutter, Smith, Lesko and Fernandez's (1989) School Membership models of high school completion to a sample of 4,597 eighth graders taken from the National Educational Longitudinal Study of 1988, (NELS:88), utilizing structural equation modeling techniques. This study found support for the importance of educational engagement as a factor in understanding academic achievement. The Participation-Identification model was particularly well fitting when applied to the sample of high school completers, dropouts (both overall and White dropouts) and African-American students. This study also confirmed the contribution of school environmental factors (i.e., size, diversity of economic and ethnic status among students) and family resources (i.e., availability of learning resources in the home and parent educational level) to students' educational engagement. Based on these findings, school social workers will need to be more attentive to utilizing macro-level interventions (i.e., community organization, interagency coordination) to achieve the organizational restructuring needed to address future challenges. The support found for the Participation-Identification model supports a shift in school social workers' attention from reactive attempts to improve the affective-interpersonal lives of students to proactive attention to their academic lives. The model concentrates school social work practices on the central mission of schools, which is educational engagement. School social workers guided by this model would be encouraged to seek changes in school policies and organization that would facilitate educational engagement. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Appropriate mathematical models that are capable of estimating times to failures and the probability of failures in the future are essential in EAM. In most real-life situations, the lifetime of an engineering asset is influenced and/or indicated by different factors that are termed as covariates. Hazard prediction with covariates is an elemental notion in the reliability theory to estimate the tendency of an engineering asset failing instantaneously beyond the current time assumed that it has already survived up to the current time. A number of statistical covariate-based hazard models have been developed. However, none of them has explicitly incorporated both external and internal covariates into one model. This paper introduces a novel covariate-based hazard model to address this concern. This model is named as Explicit Hazard Model (EHM). Both the semi-parametric and non-parametric forms of this model are presented in the paper. The major purpose of this paper is to illustrate the theoretical development of EHM. Due to page limitation, a case study with the reliability field data is presented in the applications part of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints among the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the existing ambiguity searching methods from four aspects: exclusion of nuisance integer candidates based on the available integer constraints; integer rounding; integer bootstrapping and integer least squares estimations. Finally, this paper systematically addresses the similarities and differences between the generalized TCAR and decorrelation methods from both theoretical and practical aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the problems of three carrier phase ambiguity resolution (TCAR) and position estimation (PE) are generalized as real time GNSS data processing problems for a continuously observing network on large scale. In order to describe these problems, a general linear equation system is presented to uniform various geometry-free, geometry-based and geometry-constrained TCAR models, along with state transition questions between observation times. With this general formulation, generalized TCAR solutions are given to cover different real time GNSS data processing scenarios, and various simplified integer solutions, such as geometry-free rounding and geometry-based LAMBDA solutions with single and multiple-epoch measurements. In fact, various ambiguity resolution (AR) solutions differ in the floating ambiguity estimation and integer ambiguity search processes, but their theoretical equivalence remains under the same observational systems models and statistical assumptions. TCAR performance benefits as outlined from the data analyses in some recent literatures are reviewed, showing profound implications for the future GNSS development from both technology and application perspectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"International Journalism and Democracy" explores a new form of journalism that has been dubbed ‘deliberative journalism’. As the name suggests, these forms of journalism support deliberation — the processes in which citizens recognize and discuss the issues that affect their communities, appraise the potential responses to those issues, and make decisions about whether and how to take action. Authors from across the globe identify the types of journalism that assist deliberative politics in different cultural and political contexts. Case studies from 15 nations spotlight different approaches to deliberative journalism, including strategies that have been sometimes been labeled as public or civic journalism, peace journalism, development journalism, citizen journalism, the street press, community journalism, social entrepreneurism, or other names. Countries that are studied in-depth include the United States, the United Kingdom, Germany, Finland, China, India, Japan, Indonesia, Australia, New Zealand, South Africa, Nigeria, Brazil, Colombia and Puerto Rico. Each of the approaches that are described offers a distinctive potential to support deliberative democracy. However, the book does not present any of these models or case studies as examples of categorical success. Instead, it explores different elements of the nature, strengths, limitations and challenges of each approach, as well as issues affecting their longer-term sustainability and effectiveness. The book also describes the underlying principles of deliberation, the media’s potential role in deliberation from a theoretical and practical perspective, and ongoing issues for deliberative media practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimum Wellness involves the development, refinement and practice of lifestyle choices which resonate with personally meaningful frames of reference. Personal transformations are the means by which our frames of reference are refined across the lifespan. It is through critical reflection, supportive relationships and meaning making of our experiences that we construct and reconstruct our life paths. When individuals are able to be what they are destined to be or reach their higher purpose, then they are able to contribute to the world in positive and meaningful ways. Transformative education facilitates the changes in perspective that enable one to contemplate and travel a path in life that leads to self-actualisation. This thesis argues for an integrated theoretical framework for optimum Wellness Education. It establishes a learner centred approach to Wellness education in the form of an integrated instructional design framework derived from both Wellness and Transformative education constructs. Students’ approaches to learning and their study strategies in a Wellness education context serve to highlight convergences in the manner in which students can experience perspective transformation. As they learn to critically reflect, pursue relationships and adapt their frames of reference to sustain their pursuit of both learning and Wellness goals, strengthening the nexus between instrumental and transformative learning is a strategically important goal for educators. The aim of this exploratory research study was to examine those facets that serve to optimise the learning experiences of students in a Wellness course. This was accomplished through three research issues: 1) What are the relationships between Wellness, approaches to learning and academic success? 2) How are students approaching learning in an undergraduate Wellness subject? Why are students approaching their learning in the ways they do? 3) What sorts of transformations are students experiencing in their Wellness? How can transformative education be formulated in the context of an undergraduate Wellness subject? Subsequent to a thorough review of the literature pertaining to Wellness education, a mixed method embedded case study design was formulated to explore the research issues. This thesis examines the interrelationships between student, content and context in a one semester university undergraduate unit (a coherent set of learning activities which is assigned a unit code and a credit point value). The experiences of a cohort of 285 undergraduate students in a Wellness course formed the unit of study and seven individual students from a total of sixteen volunteers whose profiles could be constructed from complete data sets were selected for analysis as embedded cases. The introductory level course required participants to engage in a personal project involving a behaviour modification plan for a self-selected, single dimension of Wellness. Students were given access to the Standard Edition Testwell Survey to assess and report their Wellness as a part of their personal projects. To identify relationships among the constructs of Self-Regulated Learning (SRL), Wellness and Student Approaches to Learning (SAL) a blend of quantitative and qualitative methods to collect and analyse data was formulated. Surveys were the primary instruments for acquiring quantitative data. Sources included the Wellness data from Testwell surveys, SAL data from R-SPQ surveys, SRL data from MSLQ surveys and student self-evaluation data from an end of semester survey. Students’ final grades and GPA scores were used as indicators of academic performance. The sources of qualitative data included subject documentation, structured interview transcripts and open-ended responses to survey items. Subsequent to a pilot study in which survey reliability and validity were tested in context, amendments to processes for and instruments of data collection were made. Students who adopted meaning oriented (deep/achieving) approaches tended to assess their Wellness at a higher level, seek effective learning strategies and perform better in formal study. Posttest data in the main study revealed that there were significant positive statistical relationships between academic performance and total wellness scores (rs=.297, n=205, p<.01). Deep (rs=.343, n=137, p<.01) and achieving (rs=.286, n=123, p<.01) approaches to learning also significantly correlated with Wellness whilst surface approaches had negative correlations that were not significant. SRL strategies including metacognitive selfregulation, effort, help-seeking and critical thinking were increasingly correlated with Wellness. Qualitative findings suggest that while all students adopt similar patterns of day to day activities for example attending classes, taking notes, working on assignments the level of care with which these activities is undertaken varies considerably. The dominant motivational trigger for students in this cohort was the personal relevance and associated benefits of the material being learned and practiced. Students were inclined to set goals that had a positive impact on affect and used “sense of happiness” to evaluate their achievement status. Students who had a higher drive to succeed and/or understand tended to have or seek a wider range of strategies. Their goal orientations were generally learning rather than performance based and barriers presented a challenge which could be overcome as opposed to a blockage which prevented progress. Findings from an empirical analysis of the Testwell data suggest that a single third order Wellness construct exists. A revision of the instrument is necessary in order to juxtapose it with the chosen six dimensional Wellness model that forms the foundation construct in the course. Further, redevelopment should be sensitive to the Australian context and culture including choice of language, examples and scenarios used in item construction. This study concludes with an heuristic for use in Wellness education. Guided by principles of Transformative education theory and behaviour change theory, and informed by this representative case study the “CARING” heuristic is proposed as an instructional design tool for Wellness educators seeking to foster transformative learning. Based upon this study, recommendations were made for university educators to provide authentic and personal experiences in Wellness curricula. Emphasis must focus on involving students and teachers in a partnership for implementing Wellness programs both in the curriculum and co-curricularly. The implications of this research for practice are predicated on the willingness of academics to embrace transformative learning at a personal level and a professional one. To explore students’ profiles in detail is not practical however teaching students how to guide us in supporting them through the “pain” of learning is a skill which would benefit them and optimise the learning and teaching process. At a theoretical level, this research contributes to an ecological theory of Wellness education as transformational change. By signposting the wider contexts in which learning takes place, it seeks to encourage changing paradigms to ones which harness the energy of each successive contextual layer in which students live. Future research which amplifies the qualities of individuals and groups who are “Well” and seeks the refinement and development of instruments to measure Wellness constructs would be desirable for both theoretical and applied knowledge bases. Mixed method Wellness research derived and conducted by teams that incorporate expertise from multiple disciplines such as psychology, anthropology, education, and medicine would enable creative and multi-perspective programs of investigation to be designed and implemented. Congruences and inconsistencies in health promotion and education would provide valuable material for strengthening the nexus between transformational learning and behaviour change theories. Future development of and research on the effectiveness of the CARING heuristic would be valuable in advancing the understanding of pedagogies which advance rather than impede learning as a transformative process. Exploring pedagogical models that marry with transformative education may render solutions to the vexing challenge of teaching and learning in diverse contexts.