998 resultados para Modelo de michaelis-menten


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to investigate the effects of root surface iron plaque on the uptake kinetics of arsenite and arsenate by excised roots of rice (Oryza sativa) seedlings. The results demonstrated that the presence of iron plaque enhanced arsenite and decreased arsenate uptake. Arsenite and arsenate uptake kinetics were adequately fitted by the Michaelis-Menten function in the absence of plaque, but produced poor fits to this function in the presence of plaque. Phosphate in the uptake solution did not have a significant effect on arsenite uptake irrespective of the presence of iron plaque; however phosphate had a significant effect on arsenate uptake. Without iron plaque, phosphate inhibited arsenate uptake. The presence of iron plaque diminished the effect of phosphate on arsenate uptake, possibly through a combined effect of arsenate desorption from iron plaque.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Triose phosphate isomerase (TPI) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, a reaction in the glycolytic pathway. TPI from the common liver fluke, Fasciola hepatica, has been cloned, sequenced and recombinantly expressed in Escherichia coli. The protein has a monomeric molecular mass of approximately 28 kDa. Crosslinking and gel filtration experiments demonstrated that the enzyme exists predominantly as a dimer in solution. F. hepatica TPI is predicted to have a ß-barrel structure and key active site residues (Lys-14, His-95 and Glu-165) are conserved. The enzyme shows remarkable stability to both proteolytic degradation and thermal denaturation. The melting temperature, estimated by thermal scanning fluorimetry, was 67 °C and this temperature was increased in the presence of either dihydroxyacetone phosphate or glyceraldehyde 3-phosphate. Kinetic studies showed that F. hepatica TPI demonstrates Michaelis-Menten kinetics in both directions, with Km values for dihydroxyacetone phosphate and glyceraldehyde 3-phosphate of 2.3 mM and 0.66 mM respectively. Turnover numbers were estimated at 25,000 s(-1) for the conversion of dihydroxyacetone phosphate and 1900 s(-1) for the conversion of glyceraldehyde 3-phosphate. Phosphoenolpyruvate acts as a weak inhibitor of the enzyme. F. hepatica TPI has many features in common with mammalian TPI enzymes (e.g. ß-barrel structure, homodimeric nature, high stability and rapid kinetic turnover). Nevertheless, recent successful identification of specific inhibitors of TPI from other parasites, suggests that small differences in structure and biochemical properties could be exploited in the development of novel, species-specific inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 µM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (=3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics. © 2009 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate measurement of the quantitative aspects of enzyme-catalysed reactions
is critical for a deeper understanding of their mechanisms, for their exploitation in biotechnology and for targeting enzymes by drug-like molecules. It is important to move beyond basic enzyme kinetics as encapsulated in the Michaelis-Menten equation. The type and magnitude of inhibition should be determined. Since the majority of enzyme-catalysed reactions involve more than one substrate, it is critical to understand how to treat these reactions quantitatively and how their kinetic behaviour depends on the type of mechanism occurring.
Some reactions do not conform to “standard” Michaelis-Menten treatment and exhibit phenomena such as cooperativity. Again it is important to put these phenomena onto a quantitative basis. Similarly the treatment of the effects of pH on enzymes is often vague and uninformative without a proper quantitative treatment. This review brings together tools and approaches for dealing with enzymes quantitatively together with original references for these approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis-Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis-Menten kinetics. Arsenite influx was well described by the two parameter model of 'Michaelis-Menten' kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA. © 2008 Springer Science+Business Media B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here the mechanism of arsenite transport into paddy rice (Oryza sativa) roots, uptake of which is described by Michaelis-Menten kinetics, is reported. A recent study on yeast (Saccharomyces cerevisiae) showed that undissociated arsenite (its pKa is 9.2) was transported across the plasma membrane via a glycerol transporting channel. To investigate whether the same mechanism of transport was involved for rice, competitive studies with glycerol, which is transported into cells via aquaporins, were performed. Glycerol competed with arsenite for transport in a dose-dependent manner, indicating that arsenite and glycerol uptake mechanisms were the same. Arsenate transport was unaffected by glycerol, confirming that arsenate and arsenite are taken up into cells by different mechanisms. Antimonite, an arsenite analogue that is transported into S. cerevisiae cells by aquaporins, also competed with arsenite transport in a dose-dependent manner, providing further evidence that arsenite is transported into rice roots via glycerol transporting channels. Mercury (Hg2+) inhibited both arsenite and arsenate uptake, suggesting that inhibition of influx was due to general cellular stress rather than the specific action of Hg2+ on aquaporins. Arsenite uptake by pea (Pisum sativum) and wheat (Triticum aestivum) was also described by Michaelis-Menten kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoenolpyruvate carboxylase (PEPC) and malic enzyme activities in soluble protein extracts of Avena coleoptiles were investigated to determine whether their kinetics were consistent with a role in cytosol pH regulation. Malic enzyme activity was specific for NADP+ and Mn2+. Maximal labelled product formation from [14C]-substrates required the presence of all coenzymes, cofactors and substrates. Plots of rate versus malate concentration, and linear transformations there- 2 of, indicated typical Michaelis-Menten kinetics at non-saturating malate levels and substrate inhibition at higher malate levels. pH increases between 6.5 and 7.25 increased near-optimal activity, decreased the degree of substrate inhibition and the Kmapp(Mn2+) but did not affect the Vmax or Kmapp(malate). Transformed data of PEPC activity demonstrated non-linear plots indicative of non-Michaelian kinetics. pH increases between 7.0 and 7.6 increased the Vmax and decreased the Km app (Mg2+) but did not affect the Kmapp(PEP). Various carboxylic acids and phosphorylated sugars inhibited PEPC and malic enzyme activities, and these effects decreased with pH increases. Metabolite inhibited malic enzyme activity was non-competitive and resulted mainly from Mn2+ chelation. In contrast, metabolite inhibited PEPC activity was unique for each compound tested, being variously dependent on the PEP concentration and the pH employed. These results indicate that fluctuations in pH and metabolite levels affect PEPC and malic enzyme activities similarly and that 3 the in vitro properties of PEPC are consistent with its proposed role in a pH-stat, whereas the in vitro properties of the malic enzyme cannot be interpreted in terms of a role in pH regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il est rapporté que la biodisponibilité orale de l’amoxicilline chez le porc est environ trois fois moindre que chez l’homme. Pour élucider les raisons de cette différence, la pharmacocinétique artérielle, veineuse porte et urinaire de cet antibiotique a été caractérisée à des doses intragastriques de 4 à 30 mg/kg et différents modèles compartimentaux physiologiques ont été conçus pour l’analyse des données. La biodisponibilité orale de l’amoxicilline est maximale à 4 mg/kg, avec une valeur moyenne de 52%. Les différences porto-systémiques de concentrations plasmatiques d’amoxicilline et la clairance urinaire ont permis de démontrer une augmentation de la clairance hépatique jusqu’à la dose de 30 mg/kg. Un modèle compartimental comprenant deux voies parallèles d’absorption (de type Michaelis- Menten d’accessibilité limitée dans le temps et d’ordre 1), deux compartiments de distribution (central et périphérique) deux voies d’élimination (excrétions urinaire et biliaire) est celui qui prédit le mieux les données observées. Ces résultats mettent en évidence le rôle prépondérant du transporteur saturable PepT1 dans l’absorption orale de l’amoxicilline administrée à faible dose, ainsi que l’importance croissante de l’absorption passive lors d’administration à forte dose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un papier bioactif est obtenu par la modification d’un papier en y immobilisant une ou plusieurs biomolécules. La recherche et le développement de papiers bioactifs est en plein essor car le papier est un substrat peu dispendieux qui est déjà d’usage très répandu à travers le monde. Bien que les papiers bioactifs n’aient pas connus de succès commercial depuis la mise en marche de bandelettes mesurant le taux de glucose dans les années cinquante, de nombreux groupes de recherche travaillent à immobiliser des biomolécules sur le papier pour obtenir un papier bioactif qui est abordable et possède une bonne durée de vie. Contrairement à la glucose oxidase, l’enzyme utilisée sur ces bandelettes, la majorité des biomolécules sont très fragiles et perdent leur activité très rapidement lorsqu’immobilisées sur des papiers. Le développement de nouveaux papiers bioactifs pouvant détecter des substances d’intérêt ou même désactiver des pathogènes dépend donc de découverte de nouvelles techniques d’immobilisation des biomolécules permettant de maintenir leur activité tout en étant applicable dans la chaîne de production actuelle des papiers fins. Le but de cette thèse est de développer une technique d’immobilisation efficace et versatile, permettant de protéger l’activité de biomolécules incorporées sur des papiers. La microencapsulation a été choisie comme technique d’immobilisation car elle permet d’enfermer de grandes quantités de biomolécules à l’intérieur d’une sphère poreuse permettant leur protection. Pour cette étude, le polymère poly(éthylènediimine) a été choisi afin de générer la paroi des microcapsules. Les enzymes laccase et glucose oxidase, dont les propriétés sont bien établies, seront utilisées comme biomolécules test. Dans un premier temps, deux procédures d’encapsulation ont été développées puis étudiées. La méthode par émulsion produit des microcapsules de plus petits diamètres que la méthode par encapsulation utilisant un encapsulateur, bien que cette dernière offre une meilleure efficacité d’encapsulation. Par la suite, l’effet de la procédure d’encapsulation sur l’activité enzymatique et la stabilité thermique des enzymes a été étudié à cause de l’importance du maintien de l’activité sur le développement d’une plateforme d’immobilisation. L’effet de la nature du polymère utilisé pour la fabrication des capsules sur la conformation de l’enzyme a été étudié pour la première fois. Finalement, l’applicabilité des microcapsules de poly(éthylèneimine) dans la confection de papiers bioactifs a été démontré par le biais de trois prototypes. Un papier réagissant au glucose a été obtenu en immobilisant des microcapsules contenant l’enzyme glucose oxidase. Un papier sensible à l’enzyme neuraminidase pour la détection de la vaginose bactérienne avec une plus grande stabilité durant l’entreposage a été fait en encapsulant les réactifs colorimétriques dans des capsules de poly(éthylèneimine). L’utilisation de microcapsules pour l’immobilisation d’anticorps a également été étudiée. Les avancées au niveau de la plateforme d’immobilisation de biomolécules par microencapsulation qui ont été réalisées lors de cette thèse permettront de mieux comprendre l’effet des réactifs impliqués dans la procédure de microencapsulation sur la stabilité, l’activité et la conformation des biomolécules. Les résultats obtenus démontrent que la plateforme d’immobilisation développée peut être appliquée pour la confection de nouveaux papiers bioactifs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of insulin on cell proliferation in vivo has been studied in hepatectomised streptozotocin- diabetic rats. The extent of cell proliferation in sham and hepatectomized- control, diabetic and insulin treated rats were monitored by determining DNA content and [3H]thymidine incorporation into DNA. The kinetic parameters of thymidine kinase a regulatory enzyme for DNA synthesis was also studied in these groups. The rate of DNA synthesis in liver of streptozotocin -diabetic rats was significantly higher 24 hrs post-hepatectomy compared to control and insulin treated diabetic groups. Kinetic studies of thymidine kinase revealed that there was no change in the Michaelis -Menten constant (Km) whereas maximum velocity (Vmax) was elevated in the diabetic hepatectomized groups compared to control and insulin treated hepatectomized groups. Thus our study elucidates the role of insulin in thymidine kinase activity and DNA synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urease ist ein Enzym, das Harnstoff spaltet und dessen Reaktionsgeschwindigkeit leicht mittels Leitfähigkeitsmessungen bestimmt werden kann. Dieses Experiment kann, als Schüler- oder Demonstrationsversuch, im Biologie- und Chemieunterricht der Oberstufe von qualitativen Betrachtungen bis hin zur Ermittlung komplexer kinetischer Beschreibungen (Michaelis-Menten-Kinetik) ausgewertet werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.