959 resultados para Mitochondrial genome


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using PCR, the complete mitochondrial genome was sequenced in three frillneck lizards (Chlamydosaurus kingii). The mitochondria spanned over 16,761bp. As in other vertebrates, two rRNA genes, 22 tRNA genes and 13 protein coding genes were identified. However, similar to some other squamate reptiles, two control regions (CRI and CRII) were identified, spanning 801 and 812 bp, respectively. Our results were compared with another Australian member of the family Agamidae, the bearded dragon (Pogana vitticeps). The overall base composition of the light-strand sequence largely mirrored that observed in P vitticeps. Furthermore, similar to P. vitticeps, we observed an insertion 801 bp long between the ND5 and ND6 genes. However, in contrast to P vitticeps we did not observe a conserved sequence block III region. Based on a comparison among the three frillneck lizards, we also present data on the proportion of variable sites within the major mitochondrial regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Coleoptera order is the richest group among Metazoa, but its phylogenetics remains incompletely understood. Among Coleoptera, bioluminescence is found within the Elateroidea, but the evolution of this character remains a mystery. Mitochondrial DNA has been used extensively to reconstruct phylogenetic relationships, however, the evolution of a single gene does not always correspond to the species evolutionary history and the molecular marker choice is a key step in this type of analysis. To create a solid basis to better understand the evolutionary history of Coleoptera and its bioluminescence, we sequenced and comparatively analyzed the mitochondrial genome of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae). © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrophylliidae is one of the few monophyletic families within the Scleractinia that embraces zooxanthellate and azooxanthellate species represented by both solitary and colonial forms. Among the exclusively azooxanthellate genera, Dendrophyllia is reported worldwide from 1 to 1200 m deep. To date, although three complete mitochondrial (mt) genomes from representatives of the family are available, only that from Turbinaria peltata has been formally published. Here we describe the complete nucleotide sequence of the mt genome from Dendrophyllia arbuscula that is 19 069 bp in length and comprises two rDNAs, two tRNAs, and 13 protein-coding genes arranged in the canonical scleractinian mt gene order. No genes overlap, resulting in the presence of 18 intergenic spacers and one of the longest scleractinian mt genome sequenced to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madrepora is one of the most ecologically important genera of reef-building scleractinians in the deep sea, occurring from tropical to high-latitude regions. Despite this, the taxonomic affinities and relationships within the genus Madrepora remain unclear. To clarify these issues, we sequenced the mitochondrial (mt) genome of the most widespread Madrepora species, M. oculata, and compared this with data for other scleractinians. The architecture of the M. oculara mt genome was very similar to that of other scleractinians, except for a novel gene rearrangement affecting only cox2 and cox3. This pattern of gene organization was common to four geographically distinct M. oculata individuals as well as the congeneric species M. minutiseptum, but was not shared by other genera that are closely related on the basis of cox1 sequence analysis nor other oculinids, suggesting that it might be unique to Madrepora. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD Thesis is the result of my research activity in the last three years. My main research interest was centered on the evolution of mitochondrial genome (mtDNA), and on its usefulness as a phylogeographic and phylogenetic marker at different taxonomic levels in different taxa of Metazoa. From a methodological standpoint, my main effort was dedicated to the sequencing of complete mitochondrial genomes, and the approach to whole-genome sequencing was based on the application of Long-PCR and shotgun sequences. Moreover, this research project is a part of a bigger sequencing project of mtDNAs in many different Metazoans’ taxa, and I mostly dedicated myself to sequence and analyze mtDNAs in selected taxa of bivalves and hexapods (Insecta). Sequences of bivalve mtDNAs are particularly limited, and my study contributed to extend the sampling. Moreover, I used the bivalve Musculista senhousia as model taxon to investigate the molecular mechanisms and the evolutionary significance of their aberrant mode of mitochondrial inheritance (Doubly Uniparental Inheritance, see below). In Insects, I focused my attention on the Genus Bacillus (Insecta Phasmida). A detailed phylogenetic analysis was performed in order to assess phylogenetic relationships within the genus, and to investigate the placement of Phasmida in the phylogenetic tree of Insecta. The main goal of this part of my study was to add to the taxonomic coverage of sequenced mtDNAs in basal insects, which were only partially analyzed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.