28 resultados para Microgel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of poly(N-isopropylacrylamide) [pNIPAM]-based homo-polymer and co-polymer microgel particles were prepared by surfactant-free emulsion polymerisation. The co-monomers were acrylic acid. 4-vinylpyridine. butyl acrylate, 4-vinylbiphenyl and vinyl laurate. Co-monomers were added at a concentration of 10% (w/w) relative to the base monomer pNIPAM for the preparation of each co-polymer microgel. The co-monomers chosen vary by their organic chain length, polarity and pH sensitivity, as these should influence how the particles behave in aqueous and non-aqueous solvents. The effect of adding different types of co-monomer into the microgel structure was investigated with respect to their dispersibility in different solvents. These microgel particles have shown useful application in the removal of water from biodiesel prepared from rape seed. Karl Fischer experiments showed that microgel particles can be used to reduce the water content in biodiesel to an acceptable level for incorporation into internal combustion engines. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cationic poly(N-isopropylacrylamide/4-vinylpyridine) [poly(NIPAM/4-VP)] polyelectrolyte co-polymer microgels have been prepared by surfactant free emulsion polymerization (SFEP) with varying compositions of 4-VP and NIPAM. The compositions of 4-VP were 15, 25, 35, 45, 55 wt.% relative to NIPAM. The temperature and pH responsive swelling–deswelling properties of these microgels have been investigated using dynamic light scattering (DLS) and electrophoretic mobility measurements. DLS results have shown that the particle diameter of the poly(NIPAM/4-VP) microgels decreases with increasing concentration (wt.%) of 4-VP over the 20–60 °C temperature range due to the increased amount of hydrophobic group. The particle size of all poly(NIPAM/4-VP) microgel series increases with decreasing pH, as the 4-VP units become more protonated at low pH below the pKa (5.39) of the monomer 4-VP. Electrophoretic mobility results have shown that electrophoretic mobility increases as the temperature/pH increases at a constant background ionic strength (1 × 10− 4 mol dm− 3 NaCl). These results are in good agreement with DLS results. The temperature/pH sensitivity of these microgels depends on the ratio of NIPAM/4-VP concentration in the co-polymer microgel systems. The combined temperature/pH responsiveness of these polyelectrolyte microgels can be used in applications where changes in particle size with small change in pH or temperature is of great consequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A type of photo- and thermo-responsive composite microsphere composed of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) (rGO@pNIPAM) is successfully fabricated by a facile solution mixing method. Due to the high optical absorbance and thermal conduction of rGO, the composite microspheres are endowed with the new property of photo-response, in addition to the intrinsic thermally sensitive property of pNIPAM. This new ability undoubtedly enlarges the scope of applications of the microgel spheres. Furthermore, through controlling the rGO content in the composite, the photo- and thermo-sensitivity of the composite can be effectively modulated. That is, with a lower rGO content (≤32% by weight), the composite microspheres perform only thermally induced changes, such as volume contraction (by ∼45% in diameter) and drug release, when crossing the lower critical solution temperature of pNIPAM. With a higher rGO content (∼47.5%), both temperature and light irradiation can trigger changes in the composite. However, when the rGO content is increased to around 64.5%, the thermo-responsivity of the composite disappears, and the spheres exhibit only photo-induced drug release. With a further increase in rGO content, the environmentally responsive ability of the microspheres vanishes. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimuli-sensitive microgels of poly(N-isopropylacrylamide-co-acrylic acid) (designated as P(NIPAAm-co-AA)) were prepared through precipitation polymerization. Their capacity to load and release different drugs under different conditions, including physiological, in a controlled manner was analyzed. Two drugs were assayed and compared: dexamethasone and vancomycin. The prepared microgel particles show good thermosensitivity. In addition, the amount of cross-linker used in the preparation of the microgels does not greatly influence the drug-release capability of P(NIPAAm-co-AA)), but the amount of drug used to load the microgels did result in bigger amounts of drug released afterwards. These results imply potential application of prepared stimuli-sensitive microgel dispersions as drug-delivery systems and tissue engineering materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho foi feito um estudo sobre a preparação e caracterização de microesferas poliméricas à base de poli(ácido metacrílico-co-divinilbenzeno) por polimerização por precipitação. As partículas foram sintetizadas e analisadas em diferentes condições de reação. Partículas esféricas políméricas foram sintetizadas na faixa de 1,66 - 8,41 m, assim como partículas no estado de microgel. As partículas foram caracterizadas pelas técnicas de espalhamento de luz dinâmica (DLS), análise termogravimétrica (TGA), espectroscopia na região do infravermelho (FTIR), adsorção de nitrogênio pelos métodos BET (Brunauer, Emmett e Teller) e BJH (Barret, Joyner e Halenda), microscopia ótica, microscopia eletrônica de varredura, e testes de razão de inchamento. A análise das partículas foi feita para verificar a influência da mudança na composição de comonômeros, grau de reticulação, relação de monômeros totais/diluentes em massa/volume (g/100 mL), e quanto à relação volumétrica de diluentes. Verificou-se que houve um aumento no tamanho das partículas e da resistência térmica com a diminuição da fração molar de MAA (ácido metacrílico). Na preparação de partículas com fração molar de 50% de MAA, e relação volumétrica acetonitrila/tolueno de 75/25, quanto maior a relação de monômeros totais/diluentes (g/100 mL), maior o tamanho e o rendimento das partículas. Com a mudança da relação volumétrica de diluentes, houve mudança nas características de porosidade, tamanho das partículas, e grau de inchamento das partículas, sendo que na relação volumétrica acetonitrila/tolueno de 50/50, houve formação de microgel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N'-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and H-1-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter contains sections titled: - Introduction - Microgel preparation - Characterisation of microgels - Properties and applications - Conclusions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoviscosity effect in aqueous solutions of novel poly(4-methacryloyloxyazobenzene-co-N,N-dimethyl acrylamide) (MOAB-DMA) was demonstrated. The observed significant reduction in the zero-shear viscosity upon UV-irradiation of MOAB-DMA aqueous solutions was due to the dissociation of the interchain azobenzene aggregates. Such phenomena can be advantageously used in photoswitchable fluidic devices and in protein separation. Introduction of enzymatically degradable azo cross-links into Pluronic-PAA microgels allowed for control of swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. Dynamic changes in the cross-link density of stimuli-responsive microgels enable novel opportunities for the control of gel swelling, of importance for drug delivery and microgel sensoric applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The traditional Mediterranean diet is thought to represent a healthy lifestyle; especially given the incidence of several cancers including colorectal cancer is lower in Mediterranean countries compared to Northern Europe. Olive oil, a central component of the Mediterranean diet, is believed to beneficially affect numerous biological processes. We used phenols extracted from virgin olive oil on a series of in vitro systems that model important stages of colon carcinogenesis. The effect the extract on DNA damage induced by hydrogen peroxide was measured in HT29 cells using single cell microgel-electrophoresis. A significant anti-genotoxic linear trend (p=0.011) was observed when HT29 cells were pre-incubated with olive oil phenols (0, 5, 10, 25, 50, 75, 100 microg/ml) for 24 hr, then challenged with hydrogen peroxide. The olive oil phenols (50, 100 microg/ml) significantly (p=0.004, p=0.002) improved barrier function of CACO2 cells after 48 hr as measured by trans-epithelial resistance. Significant inhibition of HT115 invasion (p<0.01) was observed at olive oil phenols concentrations of 25, 50, 75, 100 microg/ml using the matrigel invasion assay. No effect was observed on HT115 viability over the concentration range 0, 25, 50 75, 100 microg/ml after 24 hr, although 75 and 100 microg/ml olive oil phenols significantly inhibited HT115 cell attachment (p=0.011, p=0.006). Olive oil phenols had no significant effect on metastasis-related gene expression in HT115 cells. We have demonstrated that phenols extracted from virgin olive oil are capable of inhibiting several stages in colon carcinogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phthalocyanine (Pc) is a type of promising sensitizer molecules for photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous medium. The incorporation of lipid molecules significantly enhances the Pc loading efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After internalization, the particles show efficient fluorescent imaging and PDT effect. Our work demonstrates promising candidates in promoting the use of hydrophobic drugs including photosensitizers in tumor therapies. © 2014 by the authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agaricus blazei Murrill, popularly known as the sun mushroom, is a native mushroom in SP, Brazil, that has been widely used in the treatment of cancer and many other pathologies in different parts of the world. A water-soluble protein-polysaccharide complex (1 → 6)β-D-glucan has been isolated from its fruiting body that showed immune-modulation activity. From organic extracts, linoleic acid has been isolated and determined to be the main substance with antimutagenic activity. Using both the micronucleus (MN) and comet (single cell microgel electrophoresis) assays, this study determined the genotoxic and antigenotoxic potential of A. blazei (AB) obtained from commercial sources or the following strains: a) strains AB 97/29 (young and sporulated phases); b) a mixture taken from AB 96/07, AB 96/09 and AB 97/ 11 strains; and c) commercial mushrooms from Londrina, PR and Piedade, SP, designated as AB PR and AB SP, respectively. The extracts from these mushrooms were isolated in chloroform:methanol (3:1) and used in vitro at three different concentrations. V79 cells (Chinese hamster lung cells) were exposed to the extracts under pre-, simultaneous and post-treatment conditions, combined with methyl methanesulfonate (MMS). Under the circumstances of this study, these organic extracts did not show any genotoxic or mutagenic effects, but did protect cells against the induction of micronuclei by MMS. Copyright by the Brazilian Society of Genetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ