999 resultados para Microbial physiology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygenrich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predatory Bdellovibrio bacteriovorus bacteria are remarkable in that they attach to, penetrate and digest other Gram-negative bacteria, living and replicating within them until all resources are exhausted, when they escape the prey ghost to invade fresh prey. Remarkable remodeling of both predator and prey cell occurs during this process to allow the Bdellovibrio to exploit the intracellular niche they have worked so hard to enter, keeping the prey "bdelloplast" intact until the end of predatory growth. If one views motile non-predatory bacteria in a light microscope, one is immediately struck by how rare it is for bacteria to collide. This highlights how the cell surface of Bdellovibrio must be specialized and adapted to allow productive collisions and further to allow entry into the prey periplasm and subsequent secretion of hydrolytic enzymes to digest it. Bdellovibrio can, however, also be made to grow artificially without prey; thus, they have a large genome containing both predatory genes and genes for saprophytic heterotrophic growth. Thus, the membrane and outer surface layers are a patchwork of proteins encompassing not only those that have a sole purpose in heterotrophic growth but also many more that are specialized or employed to attach to, enter, remodel, kill and ultimately digest prey cells. There is much that is as yet not understood, but molecular genetic and post-genomic approaches to microbial physiology have enhanced the pioneering biochemical work of four decades ago in characterizing some of the key events and surface protein requirements for prey attack.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans is a common opportunistic, dimorphic human fungal pathogen. One of its virulence factors is the morphological switch between yeasts and hyphal or pseudohyphal forms, which can invade tissues and cause damage. Our studies focus on factors regulating pseudohyphae and epigenetic modifications of C. albicans. Regulating factors of pseudohyphae are aromatic alcohols and high phosphate. At low concentrations, exogenous aromatic alcohols induced pseudohyphae, as did high phosphate. For addressing the pathways involved in inducing pseudohyphae by aromatic alcohols or high phosphate, we used mutants defective in cAMP dependent PKA pathway (efg1/efg1), MAP kinase pathway (cph1/cph1), or both (cph1/cph1/efg1/efg1). These mutants failed to produce either hyphae or pseudohyphae in the presence of aromatic alcohols; but high phosphate still stimulated pseudohyphae. Gcn4, a transcription activator of more than 500 amino acid related genes, is turned-on in response to amino acid starvation. The accumulation of aromatic alcohols sends nitrogen starvation signals, which inhibit eIF2B, which in turn derepresses Gcn4p. High phosphate also induces pseudohyphae by derepressing Gcn4p, although the pathways involved are still unknown. In sum, aromatic alcohols and high phosphate induce pseudohyphae by derepressing Gcn4. In this study we found a novel posttranslational histone modification in C. albicans, which is biotinylation. Western blot and Mass spectrometry techniques were used to find that Histones H2B and H4 were biotinylated at every condition tested such as yeast vs. hyphae, aerobic growth vs. anaerobic growth, rich medium vs. defined medium. In C. albicans lysines K8, K11 in histone H4 and lysines K17, K18, K31 in histone H2B are biotin attachment sites as found using mass spectrometry. Biotin was also found to enhance the germ tube formation of C. albicans. Germ tube formation assays with biotin-starved cells as inoculum showed low percent of germ tubes (1-5%). Addition of biotin to the media showed 100% germ tubes. Biotinylation of histones were not detected from biotin-starved cells. Appendix-A details work related to Farnesol quantification assays in several strains of C.albicans and Ceratocystis ulmi, and growth studies of class E VPS strains of Saccharomyces Cerevisiae. Adviser: Kenneth W. Nickerson

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Denitrification is an important process of global nitrogen cycle as it removes reactive nitrogen from the biosphere, and acts as the primary source of nitrous oxide (N2O). This thesis seeks to gain better understanding of the biogeochemistry of denitrification by investigating the process from four different aspects: genetic basis, enzymatic kinetics, environmental interactions, and environmental consequences. Laboratory and field experiments were combined with modeling efforts to unravel the complexity of denitrification process under microbiological and environmental controls. Dynamics of denitrification products observed in laboratory experiments revealed an important role of constitutive denitrification enzymes, whose presence were further confirmed with quantitative analysis of functional genes encoding nitrite reductase and nitrous oxide reductase. A metabolic model of denitrification developed with explicit denitrification enzyme kinetics and representation of constitutive enzymes successfully reproduced the dynamics of N2O and N2 accumulation observed in the incubation experiments, revealing important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Field studies demonstrated complex interaction of belowground N2O production, consumption and transport, resulting in two pulse pattern in the surface flux. Coupled soil gas diffusion/denitrification model showed great potential in simulating the dynamics of N2O below ground, with explicit representation of the activity of constitutive denitrification enzymes. A complete survey of environmental variables showed distinct regulation regimes on the denitrification activity from constitutive enzymes and new synthesized enzymes. Uncertainties in N2O estimation with current biogeochemical models may be reduced as accurate simulation of the dynamics of N2O in soil and surface fluxes is possible with a coupled diffusion/denitrification model that includes explicit representation of denitrification enzyme kinetics. In conclusion, denitrification is a complex ecological function regulated at cellular level. To assess the environmental consequences of denitrification and develop useful tools to mitigate N2O emissions require a comprehensive understanding of the regulatory network of denitrification with respect to microbial physiology and environmental interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A levedura Yarrowia lipolytica tem sido muito investigada, especialmente por ser um microrganismo oleaginoso, ou seja, capaz de acumular grandes quantidades de lipídios, o que ocorre majoritariamente em organelas denominadas partículas lipídicas. Estes lipídios apresentam várias potenciais aplicações biotecnológicas, como por exemplo na produção de óleo microbiano (single cell oil) e na produção de biodiesel. Durante este projeto de mestrado, objetivou-se estudar a fisiologia de duas linhagens da levedura Y. lipolytica, sendo uma tradicionalmente estudada pela comunidade científica internacional (linhagem w29) e outra isolada da Baía da Guanabara, no Rio de Janeiro (linhagem IMUFRJ 50682). Foram realizados cultivos em frascos agitados tipo Erlenmeyer com defletores tampados com algodão (volume total 500 mL, volume de meio 100 mL, 28 oC e 200 rotações por minuto), durante os quais foi possível: 1) escolher um meio de cultivo de composição totalmente definida, com tiamina como único fator de crescimento, adequado a estudos de fisiologia quantitativa com esta levedura; 2) verificar que Y. lipolytica não é capaz de crescer com sacarose ou xilose como única fonte de carbono; 3) verificar que Y. lipolytica cresce com velocidade específica de crescimento máxima (Máx) de 0,49 h-1 num meio complexo contendo glicose, extrato de levedura e peptona (meio YPD), 0,31 h-1 em meio definido com glicose como única fonte de carbono e 0,35 h-1 no mesmo meio, mas com glicerol como única fonte de carbono, sem excreção de metabólitos para o meio de cultivo; 4) verificar que ocorreu limitação por oxigênio nos cultivos em frasco agitado, sendo este o motivo pelo qual as células deixaram de crescer exponencialmente; 5) verificar que o uso de ureia, em vez de sulfato de amônio, como fonte de nitrogênio, contribui para uma variação menor do pH durante os cultivos, sem prejuízo ao crescimento da levedura; 6) observar que, ao se restringir a oferta de nitrogênio à levedura (aumento da relação C/N inicial no meio de 12,6 para 126), as células têm sua morfologia alterada e apresentam maior quantidade de partículas lipídicas; 7) determinar uma composição elementar para a biomassa de Y. lipolytica (CH1,98O0,58N0,13), em que os átomos de carbono encontram-se em média mais reduzidos do que na biomassa de leveduras como Saccharomyces cerevisiae e Dekkera bruxellensis. Foram também realizados cultivos em biorreator em batelada (1 L de volume útil, 28 oC, aerobiose plena e pH controlado em 5,0), durante os quais foi possível: a) estabelecer um protocolo de cultivo para Y. lipolytica em biorreator (que envolvem agitação mecânica, aeração e uso de anti-espumante, entre outras diferenças em relação aos cultivos em frasco); b) confirmar os valores dos principais parâmetros fisiológicos apresentados por esta levedura, anteriormente obtidos a partir de cultivos em frasco; c) confirmar que o fator de conversão de substrato a células (Yx/s) é maior para cultivos realizados com glicerol como fonte única de carbono (0,53 g/g para a linhagem IMUFRJ 50682), do que com glicose (0,48 g/g para a mesma linhagem). Finalmente, cultivos realizados em quimiostato com glicerol como fonte de carbono e energia, limitados por amônio (fonte de nitrogênio, relação C/N 126), às vazões específicas de 0,25 h-1 e 0,15 h-1, permitiram observar que o número de partículas lipídicas por célula de Y. lipolytica permaneceu em torno de 2 em ambas as situações e houve uma diminuição no teor de nitrogênio nas células quando a velocidade específica de crescimento diminuiu de 0,25 para 0,15 h-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poster presented at the Bacterial Electron Transfer Processes and their Regulation Meeting, European Federation of Biotechnology Microbial Physiology Section, 15-18 March 2015, Vimeiro, Portugal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5-10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell-to-cell signals of the Diffusible Signal Factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signaling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.