999 resultados para Metals Flammability


Relevância:

70.00% 70.00%

Publicador:

Resumo:

All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here. KEYWORDS: promoted ignition, metal combustion, heat conduction, thin fin, promoted combustion, burn length, burn criteria, flammability, igniter effects, heat affected zone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data generated in a normal gravity environment is often used in design and risk assessment for reduced gravity applications. It has been clearly demonstrated that this is a conservative approach for non-metallic materials which have been repeatedly shown to be less flammable in a reduced gravity environment. However, recent work has demonstrated this is not true for metallic materials. This work, conducted in a newly completed drop tower observed a significant increase in both lowest burn pressure and burn rate in reduced gravity. Hence the normal gravity qualification of a metallic materials’ lowest burn pressure or burn rate for reduced-gravity or space-based systems is clearly not conservative. This paper presents a summary of this work and the results obtained for several metallic materials showing an increased flammability and burn rate for a range of oxygen pressures, and discusses the implications of this work on the fire-safety of space-based systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Seventeen peer-reviewed papers cover the latest research on the ignition and combustion of metals and non-metals, oxygen compatibility of components and systems, analysis of ignition and combustion, failure analysis and safety. It includes aerospace, military, scuba diving, and industrial oxygen applications. Topics cover: • Development of safe oxygen systems • Ignition mechanisms within oxygen systems and how to avoid them • Specific hazards that exist with the oxygen mixture breathed by divers in the scuba industry • Issues related to oxygen system level safety • Issues related to oxygen safety in breathing systems • Detailed investigations and discussions related to the burn curves that have been generated for metals that are burning in a standard test fixture This new publication is a valuable resource for professionals in the air separation industries, oxygen manufacturers, manufacturers of materials intended for oxygen service, and users of oxygen and oxygen-enriched atmospheres, including aerospace, medical, industrial gases, chemical processing, steel and metals refining, as well as to military, commercial or recreational diving."--- publisher website

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades and in particular the past five years, numerous sandwich-type rare earth complexes containing naphthalocyanine ligands have been synthesized. The more extended delocalized π-electron system of naphthalocyanine in comparison with phthalocyanine generates unique physical, spectroscopic, electrochemical and photoelectrochemical properties which have aroused significant research interest in these compounds. This review summarizes recent progress in research on this important class of molecular materials and overviews the current status of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kaolinite-like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si-O-Si bridges,  SiOSi and  OSiO bending vibrations,  (Si-Oterminal)- stretching vibrations,  OH stretching vibrations of hydroxyl ions, and  OH bending vibrations were attributed to observed bands. Infrared bands 3289-3470 cm-1 and Raman bands 1590-1667 cm-1 were assigned to adsorbed water. O-H...O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated, validated, and applied the optimum conditions for a modified microwave assisted digestion method for subsequent ICP-MS determination of mercury, cadmium, and lead in two matrices relevant to water quality, that is, sediment and fish. Three different combinations of power, pressure, and time conditions for microwave-assisted digestion were tested, using two certified reference materials representing the two matrices, to determine the optimum set of conditions. Validation of the optimized method indicated better recovery of the studied metals compared to standard methods. The validated method was applied to sediment and fish samples collected from Agusan River and one of its tributaries, located in Eastern Mindanao, Philippines. The metal concentrations in sediment ranged from 2.85 to 341.06 mg/kg for Hg, 0.05 to 44.46 mg/kg for Cd and 2.20 to 1256.16 mg/kg for Pb. The results indicate that the concentrations of these metals in the sediments rapidly decrease with distance downstream from sites of contamination. In the selected fish species, the metals were detected but at levels that are considered safe for human consumption, with concentrations of 2.14 to 6.82 μg/kg for Hg, 0.035 to 0.068 μg/kg for Cd, and 0.019 to 0.529 μg/kg for Pb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experiment investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that the 1 - 74 um particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for he potential dissolved particulate fraction in heavy metals build-up. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.