161 resultados para Mesopore bioglass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM The local delivery of growth factors via gene therapy has gained tremendous awareness in recent years due to their sustained growth factor delivery to target tissues. The aim of this study was to fabricate and investigate a scaffold able to release growth factors via gene therapy for the repair of periodontal tissues. MATERIALS AND METHODS Novel mesoporous bioglass (MBG)/silk fibrin scaffold combined with BMP7 and/or PDGF-B adenovirus was fabricated and tested in vitro for cell migration, proliferation and differentiation. Furthermore, acute-type buccal dehiscence periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the buccal portion of the maxillary premolars in five normal male beagle dogs (12 months old, 15.0 ± 2.0 kg) and histologically examined for periodontal regeneration following implantation of the following five groups: (1) no scaffold, (2) MBG/silk scaffold alone, (3) scaffold + adPDGF-B, (4) scaffold + adBMP7, (5) scaffold + adPDGF-b + adBMP7. RESULTS In vitro findings demonstrated that adPDGF-B was able to rapidly recruit periodontal ligament (PDL) cells over sixfold more effectively than adBMP7, whereas adBMP7 was more able to induce osteoblast differentiation of PDL cells. In vivo findings demonstrate that scaffolds loaded with adPDGF-B were able to partially regenerate the periodontal ligament while adBMP7 scaffolds primarily improved new bone formation. The combination of both adPDGF-B and adBMP7 synergistically promoted periodontal regeneration by allowing up to two times greater regeneration of the periodontal ligament, alveolar bone and cementum when compared to each adenovirus used alone. CONCLUSIONS Although both PDGF-B and BMP7 are individually capable of promoting periodontal regeneration to some degree, their combination synergistically promotes wound healing in acute-type buccal dehiscence periodontal defects when delivered simultaneously. This study demonstrates the promise for successful delivery of low-cost, effective growth factor delivery via gene therapy for the treatment of periodontal defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO2 into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO2 into these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM. © 2014 Springer Science+Business Media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass®. Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and ‘needle like’ sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass® on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass® concentration, direct and indirect contact between Bioglass® and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that under elevated pH conditions, Bioglass® particles has no antibacterial effect on S. aureus whilst, a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study therefore suggest that the mechanism of antibacterial activity of Bioglass® is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.