1000 resultados para Mesangial Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hyperglycaemia is a well recognized pathogenic factor of long term complications in diabetes mellitus. Hyperglycaemia not only generates reactive oxygen species but also attenuates antioxidant mechanisms creating a state of oxidative stress. Methods: Porcine mesangial cells were cultured in high glucose (HG) for ten days to investigate the effects on the antioxidant defences of the cell. Results: Mesangial cells cultured in HG conditions had significantly reduced levels of glutathione (GSH) compared with those grown in normal glucose (NG). The reduced GSH levels were accompanied by decreased gene expression of both subunits of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in de novo synthesis of GSH. Elevated levels of intracellular malondialdehyde (MDA) were found in cells exposed to HG conditions. HG also caused elevated mRNA levels of the antioxidant enzymes CuZn superoxide dismutase (SOD) and MnSOD. These changes were accompanied by increased mRNA levels of extracellular matrix proteins (ECM), fibronectin (FN) and collagen IV (CIV). Addition of antioxidants to high glucose caused a significant reversal of FN and CIV gene expression; alpha-lipoic acid also upregulated gamma-GCS gene expression and restored intracellular GSH and MDA levels. Conclusions: We have demonstrated the existence of glucose induced-oxidative stress in mesangial cells as evidenced by elevated MDA and decreased GSH levels. The decreased levels of GSH are as a result of decreased mRNA expression of gamma-GCS within the cell. Antioxidants caused a significant reversal of FN and CIV gene expression suggesting an aetiological link between oxidative stress and increased ECM protein synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor alpha (TNFalpha). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFalpha resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFalpha-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca(2+) release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5'-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5' portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFalpha, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the activation of Wnt signalling in mesangial cells by CCN2. CCN2 stimulates phosphorylation of LRP6 and GSK-3 beta resulting in accumulation and nuclear localisation of beta-catenin, TCF/LEF activity and expression of Wnt targets. This is coincident with decreased phosphorylation of beta-catenin on Ser 33/37 and increased phosphorylation on Tyr142. DKK-1 and LRP6 siRNA reversed CCN2's effects. Microarray analyses of diabetic patients identified differentially expressed Wnt components. beta-Catenin is increased in type 1 diabetic and UUO mice and in in vitro models of hyperglycaemia and hypertension. These findings suggest that Wnt/CCN2 signalling plays a role in the pathogenesis of diabetic nephropathy. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical involvement of TGF-beta 1 (transforming growth factor-beta 1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-beta 1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-beta 1 and its physiological significance. CTGF was determined to bind directly to the T beta RIII (TGF-beta type III receptor) and antagonize TGF-beta 1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-beta 1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-beta 1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-beta 1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF Knockdown of T beta RIII restored TGF-beta 1-mediated Smad signalling and cell contractility, suggesting that T beta RIII is key for CTGF-mediated regulation of TGF-beta 1. Comparison of gene expression profiles from CTGF/TGF-beta 1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-beta 1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.