979 resultados para Membrane Attack Complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this study is to elucidate the components of the nurse shark (Ginglymostoma cirratum) membrane attack complex (MAC), specifically complement component C8a (GcC8u). Nurse shark C8a gene was cloned, sequenced, and analyzed and Western blot analysis performed to identify components of shark MAC. GcC8a consists of 2341 nucleotides that translate into a 589 amino acid sequence that shares 41.1% and 47.4 % identity with human and xenopus C8a, respectively. GcC8a conserves the MAC modular architecture and cysteine-rich backbone characteristic of complement proteins, including the cysteine residue that forms the C8a-y bond as well as the indel that is unique to C8a. Conservation of MAC protein structure is evident from crossreactivity of antihuman-MAC antibodies with shark serum proteins in Western blots which confirmed the presence of C8 and C9-like proteins in shark serum, however, did not resolve the question of whether C6 and/or C7 like proteins are present in shark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study, to elucidate the role of des(1-3)IGF-I in the maturation of IGF-I,used two strategies. The first was to detect the presence of enzymes in tissues, which would act on IGF-I to produce des(1-3)IGF-I, and the second was to detect the potential products of such enzymic activity, namely Gly-Pro-Glu(GPE), Gly-Pro(GP) and des(l- 3)IGF-I. No neutral tripeptidyl peptidase (TPP II), which would release the tripeptide GPE from IGF-I, was detected in brain, urine nor in red or white blood cells. The TPPlike activity which was detected, was attributed to a combined action of a dipeptidyl peptidase (DPP N) and an aminopeptidase (AP A). A true TPP II was, however, detected in platelets. Two purified TPP II enzymes were investigated but they did not release GPE from IGF-I under a variety of conditions. Consequently, TPP II seemed unlikely to participate in the formation of des(1-3)IGF-I. In contrast, an acidic tripeptidyl peptidase activity (TPP I) was detected in brain and colostrum, the former with a pH optimum of 4.5 and the latter 3.8. It seems likely that such an enzyme would participate in the formation of des( 1-3 )IGF-I in these tissues in vitro, ie. that des(1-3)IGF-I may have been produced as an artifact in the isolation of IGF-I from brain and colostrum in acidic conditions. This contrasts with suggestions of an in vivo role for des(1-3)IGF-I, as reported by others. The activity of a dipeptidyl peptidase N (DPP N) from urine, which should release the dipeptide GP from IGF-I, was assessed under a variety of conditions and with a variety of additives and potential enzyme stimulants, but there was no release of GP. The DPP N also exhibited a transferase activity with synthetic substrates in the presence of dipeptides, at lower concentrations than previously reported for other acceptors or other proteolytic enzymes. In addition, a low concentration of a product,possibly the tetrapeptide Gly-Pro-Gly-Leu, was detected with the action of the enzyme on IGF-I in the presence of the dipeptide Gly-Leu. As part of attempts to detect tissue production of des(1-3)IGF-I, a monoclonal antibody (MAb ), directed towards the GPE- end ofiGF-I was produced by immunisation with a 10-mer covalently attached to a carrier protein. By the use of indirect ELISA and inhibitor studies, the MAb was shown to selectively recognise peptides with anNterminal GPE- sequence, and applied to the indirect detection of des(1-3)IGF-I. The concentration of GPE in brain, measured by mass spectrometry ( MS), was low, and the concentration of total IGF-I (measured by ELISA with a commercial polyclonal antibody [P Ab]) was 40 times higher at 50 nmol/kg. This also, was not consistent with the action of a tripeptidyl peptidase in brain that converted all IGF-I to des(1-3)IGF-I plus GPE. Contrasting ELISA results, using the MAb prepared in this study, suggest an even higher concentration of intact IGF-I of 150 nmollkg. This would argue against the presence of any des( 1-3 )IGF-I in brain, but in turn, this indicates either the presence of other substances containing a GPE amino-terminus or other cross reacting epitope. Although the results of the specificity studies reported in Chapter 5 would make this latter possibility seem unlikely, it cannot be completely excluded. No GP was detected in brain by MS. No GPE was detected in colostrum by capillary electrophoresis (CE) but the interference from extraneous substances reduced the detectability of GPE by CE and this approach would require further, prior, purification and concentration steps. A molecule, with a migration time equal to that of the peptide GP, was detected in colostrum by CE, but the concentration (~ 10 11mo/L) was much higher than the IGF-I concentration measured by radio-immunoassay using a PAb (80 nmol/L) or using a Mab (300-400 nmolL). A DPP IV enzyme was detected in colostrum and this could account for the GP, derived from substrates other than IGF-1. Based on the differential results of the two antibody assays, there was no indication of the presence of des(1-3)IGF-I in brain or colostrum. In the absence of any enzyme activity directed towards the amino terminus of IGF-I and the absence any potential products, IGF-I, therefore, does not appear to "mature" via des(1-3)IGF-I in the brain, nor in the neutral colostrum. In spite of these results which indicate the absence of an enzymic attack on IGF-I and the absence of the expected products in tissues, the possibility that the conversion of IGF-I may occur in neutral conditions in limited amounts, cannot be ruled out. It remains possible that in the extracellular environment of the membrane, a complex interaction of IGF-I, binding protein, aminopeptidase(s) and receptor, produces des(1- 3)IGF-I as a transient product which is bound to the receptor and internalised.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The γ-aminobutyric acid benzodiazepine (GABAA /BZDR) ionophore complex has been widely studied in the central nervous system (CNS) and it regulates Cl− ion movement across the plasma membrane. The complex has been found in the distal tubule and the thick ascending limb of the kidney. The goal of this study was to see if modulation of this complex by agonists or antagonists could affect the way Madin-Darby Canine Kidney (MDCK) cells responded to an oxidant stress induced by menadione. When compared to cells incubated with menadione alone, preincubation with lindane, a nonspecific GABAA antagonist, coincubation with bicuculline, a specific GABAA antagonist, and coincubation with FG7142, an inverse agonist for the BZDR, protected cells from menadione cytotoxicity. Preincubation of cells in media containing PK11195 had no effect on menadione cytotoxicity. Coincubation with flurazepam, a BZDR agonist, exacerbated menadione cytotoxicity. This suggests that modulation of the GABAA/BZDR ionophore complex within MDCK cells with agonists and antagonists can alter the cellular responsiveness to an oxidant-induced injury. These responses via agonists and antagonists may be due to alterations of Cl− ion influx during late stage necrotic cell death. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Translocation of mitochondrial precursor proteins across the mitochondrial outer membrane is facilitated by the translocase of the outer membrane (TOM) complex. By using site-specific photocrosslinking, we have mapped interactions between TOM proteins and a mitochondrial precursor protein arrested at two distinct stages, stage A (accumulated at 0°C) and stage B (accumulated at 30°C), in the translocation across the outer membrane at high resolution not achieved previously. Although the stage A and stage B intermediates were assigned previously to the forms bound to the cis site and the trans site of the TOM complex, respectively, the results of crosslinking indicate that the presequence of the intermediates at both stage A and stage B is already on the trans side of the outer membrane. The mature domain is unfolded and bound to Tom40 at stage B whereas it remains folded at stage A. After dissociation from the TOM complex, translocation of the stage B intermediate, but not of the stage A intermediate, across the inner membrane was promoted by the intermembrane-space domain of Tom22. We propose a new model for protein translocation across the outer membrane, where translocation of the presequence and unfolding of the mature domain are not necessarily coupled.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les systèmes bactériens de sécrétion de type IV (T4SS) sont constitués d’un ensemble de 8 à 12 protéines conservées. Ces dernières sont utilisées lors de la translocation de protéines, la translocation de complexes ADN-protéines mais aussi pour le transport de ces derniers au travers de la membrane cellulaire. Les T4SS, en tant que facteurs de virulence pour beaucoup de pathogènes comme Brucella suis, sont donc d’excellents modèles cibles pour le développement de médicaments d’antivirulence. Ces médicaments, en privant le pathogène de son facteur essentiel de virulence : le T4SS, constituent une alternative ou encore une amélioration des traitements antibiotiques utilisés actuellement. VirB8, un facteur d’assemblage conservé dans le T4SS, forme des dimères qui sont importants pour la fonction des T4SS dans ces pathogènes. De par ses interactions multiples, VirB8 est un excellent modèle pour l’analyse des facteurs d’assemblage mais aussi en tant que cible de médicaments qui empêcheraient son interaction avec d’autres protéines et qui, in fine, désarmeraient les bactéries en les privant de leur fonctions essentielles de virulence. À ce jour, nous savons qu’il existe un équilibre monomère-dimère et un processus d’homodimerization de VirB8 dont l’importance est vitale pour la fonctionnement biologique des T4SSs. En se basant sur des essais quantitatifs d’interaction, nous avons identifié (i) des sites potentiels d’interaction avec d’autres protéines VirB du T4SS mais aussi (ii) isolé des petites molécules inhibitrices afin de tester la fonction protéique de VirB8. Afin de déterminer les acides aminés importants pour l’hétérodimérization de VirB8 avec VirB10, nous avons effectué des expériences de mutagenèse aléatoire, de phage display et d’arrimage moléculaire in silico. Ces expériences ont démontré l’importance de trois acides aminés localisés sur le feuillet β : R160, S162, T164 et I165. Ces derniers seraient importants pour l’association de VirB8 avec VirB10 étant donné que leur mutagenèse entraine une diminution de la formation du complexe VirB8-VirB10. L’objectif actuel de notre projet de recherche est de pouvoir mieux comprendre mais aussi d’évaluer le rôle de VirB8 dans l’assemblage du T4SS. Grace à un méthode de criblage adaptée à partir de la structure de VirB8, nous avons pu identifié une petite molécule inhibitrice BAR-068, qui aurait un rôle prometteur dans l’inhibition du T4SS. Nous avons utilisé la spectroscopie par fluorescence, l’essai à deux hybrides, le cross-linking et la cristallographie afin de déterminer le mécanisme d'interaction existant entre VirB8 et BAR-068. Ces travaux pourraient permettre de nombreuses avancées, notamment en termes de compréhension des mécanismes d’inhibition du T4SS. Notre objectif ultime est de pouvoir caractériser la séquence d’évènements essentiels à l’assemblage et au fonctionnement du T4SS. De manière globale, notre projet de recherche permettrait de révéler les grands principes d’assemblage des protéines membranaires, les processus de sécrétion de protéines chez les bactéries mais aussi de proposer une nouvelle stratégie lors du développement de drogues antimicrobiennes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic protozoan parasite, Trypanosoma brucei, we generated conditional cardiolipin synthase-knockout parasites. We found that cardiolipin formation in T. brucei procyclic forms is catalyzed by a bacterial-type cardiolipin synthase, providing experimental evidence for a prokaryotic-type cardiolipin synthase in a eukaryotic organism. Ablation of enzyme expression resulted in inhibition of de novo cardiolipin synthesis, reduction in cellular cardiolipin levels, alterations in mitochondrial morphology and function, and parasite death in culture. By using immunofluorescence microscopy and blue-native gel electrophoresis, cardiolipin synthase was shown to colocalize with inner mitochondrial membrane proteins and to be part of a large protein complex. During depletion of cardiolipin synthase, the levels of cytochrome oxidase subunit IV and cytochrome c1, reflecting mitochondrial respiratory complexes IV and III, respectively, decreased progressively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caveolae are striking morphological features of the plasma membrane of mammalian cells. Caveolins, the major proteins of caveolae, play a crucial role in the formation of these invaginations of the plasma membrane; however, the precise mechanisms involved are only just starting to be unravelled. Recent studies suggest that caveolae are stable structures first generated in the Golgi complex. Their formation and exit from the Golgi complex is associated with caveolin oligomerisation, acquisition of detergent insolubility, and association with cholesterol. Modelling of caveolin-membrane interactions together with in vitro studies of caveolin peptides are providing new insights into how caveolin-lipid interactions could generate the unique architecture of the caveolar domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.