820 resultados para Manufacturing Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masks are widely used in different industries, for example, traditional metal industry, hospitals or semiconductor industry. Quality is a critical issue in mask industry as it is related to public health and safety. Traditional quality practices for manufacturing process have some limitations in implementing them in mask industries. This paper aims to investigate the suitability of Six Sigma quality control method for the manufacturing process in the mask industry to provide high quality products, enhancing the process capacity, reducing the defects and the returned goods arising in a selected mask manufacturing company. This paper suggests that modifications necessary in Six Sigma method for effective implementation in mask industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designers need to consider both the functional and production process requirements at the early stage of product development. A variety of the research works found in the literature has been proposed to assist designers in selecting the most viable manufacturing process chain. However, they do not provide any assistance for designers to evaluate the processes according to the particular circumstances of their company. This paper describes a framework of an Activity and Resource Advisory System (ARAS) that generates advice about the required activities and the possible resources for various manufacturing process chains. The system provides more insight, more flexibility, and a more holistic and suitable approach for designers to evaluate and then select the most viable manufacturing process chain at the early stage of product development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roofing tile manufacturing is a mass production process with high operational and inventory wastes and costs. Due to huge operational costs, excessive inventory and wastes, and quality problems, roofing tile manufacturers are trying to implement lean manufacturing practice in their operations in order to remain competitive in an ncreasingly competitive global market. The aim of this research is to evaluate the possibility of reducing the operational and inventory costs of the tile manufacturing process through waste minimization. This paper analyses the current waste situation in a tile manufacturing process and develops current and future value stream mapping for such a process with a view to implementing lean principles in manufacturing. The focus of the approach is on cost reduction by eliminating non-value-added activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network-based process model is proposed to optimize the semiconductor manufacturing process. Being different from some works in several research groups which developed neural network-based models to predict process quality with a set of process variables of only single manufacturing step, we applied this model to wafer fabrication parameters control and wafer lot yield optimization. The original data are collected from a wafer fabrication line, including technological parameters and wafer test results. The wafer lot yield is taken as the optimization target. Learning from historical technological records and wafer test results, the model can predict the wafer yield. To eliminate the "bad" or noisy samples from the sample set, an experimental method was used to determine the number of hidden units so that both good learning ability and prediction capability can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has considered the optimisation of granola breakfast cereal manufacturing processes by wet granulation and pneumatic conveying. Granola is an aggregated food product used as a breakfast cereal and in cereal bars. Processing of granola involves mixing the dry ingredients (typically oats, nuts, etc.) followed by the addition of a binder which can contain honey, water and/or oil. In this work, the design and operation of two parallel wet granulation processes to produce aggregate granola products were incorporated: a) a high shear mixing granulation process followed by drying/toasting in an oven. b) a continuous fluidised bed followed by drying/toasting in an oven. In high shear granulation the influence of process parameters on key granule aggregate quality attributes such as granule size distribution and textural properties of granola were investigated. The experimental results show that the impeller rotational speed is the single most important process parameter which influences granola physical and textural properties. After that binder addition rate and wet massing time also show significant impacts on granule properties. Increasing the impeller speed and wet massing time increases the median granule size while also presenting a positive correlation with density. The combination of high impeller speed and low binder addition rate resulted in granules with the highest levels of hardness and crispness. In the fluidised bed granulation process the effect of nozzle air pressure and binder spray rate on key aggregate quality attributes were studied. The experimental results show that a decrease in nozzle air pressure leads to larger in mean granule size. The combination of lowest nozzle air pressure and lowest binder spray rate results in granules with the highest levels of hardness and crispness. Overall, the high shear granulation process led to larger, denser, less porous and stronger (less likely to break) aggregates than the fluidised bed process. The study also examined the particle breakage of granola during pneumatic conveying produced by both the high shear granulation and the fluidised bed granulation process. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. Particle breakage increases with applied pressure drop, and a 90° bend pipe results in more attrition for all conveying velocities relative to other pipe geometry. Additionally for the granules produced in the high shear granulator; those produced at the highest impeller speed, while being the largest also have the lowest levels of proportional breakage while smaller granules produced at the lowest impeller speed have the highest levels of breakage. This effect clearly shows the importance of shear history (during granule production) on breakage during subsequent processing. In terms of the fluidised bed granulation, there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. Finally, a simple power law breakage model based on process input parameters was developed for both manufacturing processes. It was found suitable for predicting the breakage of granola breakfast cereal at various applied air velocities using a number of pipe configurations, taking into account shear histories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.