998 resultados para Maize streak virus (MSV)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Each list is an addendum to the previous list.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One approach to reducing the yield losses caused by banana viral diseases is the use of genetic engineering and pathogen-derived resistance strategies to generate resistant cultivars. The development of transgenic virus resistance requires an efficient banana transformation method, particularly for commercially important 'Cavendish' type cultivars such as 'Grand Nain'. Prior to this study, only two examples of the stable transformation of banana had been reported, both of which demonstrated the principle of transformation but did not characterise transgenic plants in terms of the efficiency at which individual transgenic lines were generated, relative activities of promoters in stably transformed plants, and the stability of transgene expression. The aim of this study was to develop more efficient transformation methods for banana, assess the activity of some commonly used and also novel promoters in stably transformed plants, and transform banana with genes that could potentially confer resistance to banana bunchy top nanovirus (BBTV) and banana bract mosaic potyvirus (BBrMV). A regeneration system using immature male flowers as the explant was established. The frequency of somatic embryogenesis in male flower explants was influenced by the season in which the inflorescences were harvested. Further, the media requirements of various banana cultivars in respect to the 2,4-D concentration in the initiation media also differed. Following the optimisation of these and other parameters, embryogenic cell suspensions of several banana (Musa spp.) cultivars including 'Grand Nain' (AAA), 'Williams' (AAA), 'SH-3362' (AA), 'Goldfinger' (AAAB) and 'Bluggoe' (ABB) were successfully generated. Highly efficient transformation methods were developed for both 'Bluggoe' and 'Grand Nain'; this is the first report of microprojectile bombardment transformation of the commercially important 'Grand Nain' cultivar. Following bombardment of embryogenic suspension cells, regeneration was monitored from single transfom1ed cells to whole plants using a reporter gene encoding the green fluorescent protein (gfp). Selection with kanamycin enabled the regeneration of a greater number of plants than with geneticin, while still preventing the regeneration of non-transformed plants. Southern hybridisation confirmed the neomycin phosphotransferase gene (npt II) was stably integrated into the banana genome and that multiple transgenic lines were derived from single bombardments. The activity, stability and tissue specificity of the cauliflower mosaic virus 358 (CaMV 35S) and maize polyubiquitin-1 (Ubi-1) promoters were examined. In stably transformed banana, the Ubi-1 promoter provided approximately six-fold higher p-glucuronidase (GUS) activity than the CaMV 35S promoter, and both promoters remained active in glasshouse grown plants for the six months they were observed. The intergenic regions ofBBTV DNA-I to -6 were isolated and fused to either the uidA (GUS) or gfjJ reporter genes to assess their promoter activities. BBTV promoter activity was detected in banana embryogenic cells using the gfp reporter gene. Promoters derived from BBTV DNA-4 and -5 generated the highest levels of transient activity, which were greater than that generated by the maize Ubi-1 promoter. In transgenic banana plants, the activity of the BBTV DNA-6 promoter (BT6.1) was restricted to the phloem of leaves and roots, stomata and root meristems. The activity of the BT6.1 promoter was enhanced by the inclusion of intron-containing fragments derived from the maize Ubi-1, rice Act-1, and sugarcane rbcS 5' untranslated regions in GUS reporter gene constructs. In transient assays in banana, the rice Act-1 and maize Ubi-1 introns provided the most significant enhancement, increasing expression levels 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about 10-fold. In stably transformed banana plants, the maize Ubi-1 intron enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35S promoter, but did not appear to alter the tissue specificity of the promoter. Both 'Grand Nain' and 'Bluggoe' were transformed with constructs that could potentially confer resistance to BBTV and BBrMV, including constructs containing BBTV DNA-1 major and internal genes, BBTV DNA-5 gene, and the BBrMV coat protein-coding region all under the control of the Ubi-1 promoter, while the BT6 promoter was used to drive the npt II selectable marker gene. At least 30 transgenic lines containing each construct were identified and replicates of each line are currently being generated by micropropagation in preparation for virus challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symptoms of barley yellow dwarf (BYD) have been observed on cereals in nearly all countries of West Asia and North Africa. Its incidence. however, has varied during the last 15 years. Observations from field surveys are summarized. Since symptoms of barley yellow dwarf virus (BYDV) are of low diagnostic value, especially in wheat (Triticum aestivum L.), more precise qualitative and quantitative detection was derived by vector transmission and serology. In 1985 and 1986. preliminary surveys by enzyme-linked immunosorbent assay (ELlS A) indicated that BYDV incidence in the regions surveyed in Syria, Morocco, and Tunisia was around 7. 22. and 24%. respectively. By vector transmission PAV-, RPV-, and RMV-like isolates ofBYDV were identified in Morocco and the PAV-like isolate in Syria. By serology PAV-like isolates were identified in Ethiopia, Lebanon. Morocco. Syria. and Tunisia. and MA V-like isolates were identified from Morocco and Tunisia. The PAV-like type was the most common in all countries surveyed. Screening for BYDV resistance by natural infection has been carried out in a number of countries of the region during the last few years. Screening for resistance by aphid inoculation was initiated in Syria in 1986 at the International Center for Agricultural Research in the Dry Areas (ICARDA). Such screening is expected to follow in other countries of the region soon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste trabalho foi caracterizar biológica e molecularmente três isolados de Sugarcane mosaic virus (SCMV) de lavouras de milho, analisá-los filogeneticamente e discriminar polimorfismos do genoma. Plantas com sintomas de mosaico e nanismo foram coletadas em lavouras de milho, no Estado de São Paulo e no Município de Rio Verde, GO, e seus extratos foliares foram inoculados em plantas indicadoras e submetidos à análise sorológica com antissoros contra o SCMV, contra o Maize dwarf mosaic virus (MDMV) e contra o Johnsongrass mosaic virus (JGMV). Mudas de sorgo 'Rio' e 'TX 2786' apresentaram sintomas de mosaico após a inoculação dos três isolados, e o DAS-ELISA confirmou a infecção pelo SCMV. O RNA total foi extraído e usado para amplificação por transcriptase reversa seguida de reação em cadeia de polimerase (RT-PCR). Fragmentos específicos foram amplificados, submetidos à análise por polimorfismo de comprimento de fragmento de restrição (RFLP) e sequenciados. Foi possível discriminar os genótipos de SCMV isolados de milho de outros isolados brasileiros do vírus. Alinhamentos múltiplos e análises dos perfis filogenéticos corroboram esses dados e mostram diversidade nas sequências de nucleotídeos que codificam para a proteína capsidial, o que explica o agrupamento separado desses isolados e sugere sua classificação como estirpes distintas, em lugar de simples isolados geográficos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoblastoma (RB-1) is a tumor suppressor gene that encodes a 105-kDa nuclear phosphoprotein. To date, RB genes have been isolated only from metazoans. We have isolated a cDNA from maize endosperm whose predicted protein product (ZmRb) shows homology to the "pocket" A and B domains of the Rb protein family. We found ZmRb behaves as a pocket protein based on its ability to specifically interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes changes in level and phosphorylation state concomitant with endoreduplication, and it is phosphorylated in vitro by an S-phase kinase from endoreduplicating endosperm cells. Together, our results suggest that ZmRb is a representative of the pocket protein family and may play a role in cell cycle progression. Moreover, certain plant monopartite geminiviruses may operate similarly to mammalian DNA viruses, by targeting and inactivating the retinoblastoma protein, which otherwise induces G1 arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants can recognize and resist invading pathogens by signaling the induction of rapid defense responses. Often these responses are mediated by single dominant resistance genes (R genes). The products of R genes have been postulated to recognize the pathogen and trigger rapid host defense responses. Here we describe isolation of the classical resistance gene N of tobacco that mediates resistance to the well-characterized pathogen tobacco mosaic virus (TMV). The N gene was isolated by transposon tagging using the maize Activator (Ac) transposon. We confirmed isolation of the N gene by complementation of the TMV-sensitive phenotype with a genomic DNA fragment. Sequence analysis of the N gene shows that it encodes a protein with an amino-terminal domain similar to that of the cytoplasmic domains of the Drosophila Toll protein and the interleukin 1 receptor in mammals, a putative nucleotide-binding site and 14 imperfect leucine-rich repeats. The presence of these functional domains in the predicted N gene product is consistent with the hypothesis that the N resistance gene functions in a signal transduction pathway. Similarities of N to Toll and the interleukin 1 receptor suggest a similar signaling mechanism leading to rapid gene induction and TMV resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequence diversity in the coat protein coding region of Australian strains of Johnsongrass mosaic virus (JGMV) was investigated. Field isolates were sampled during a seven year period from Johnsongrass, sorghum and corn across the northern grain growing region. The 23 isolates were found to have greater than 94% nucleotide and amino acid sequence identity. The Australian isolates and two strains from the U.S.A. had about 90% nucleotide sequence identity and were between 19 and 30% different in the N-terminus of the coat protein. Two amino acid residues were found in the core region of the coat protein in isolates obtained from sorghum having the Krish gene for JGMV resistance that differed from those found in isolates from other hosts which did not have this single dominant resistance gene. These amino acid changes may have been responsible for overcoming the resistance conferred by the Krish gene for JGMV resistance in sorghum. The identification of these variable regions was essential for the development of durable pathogen-derived resistance to JGMV in sorghum.