970 resultados para Macrophage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)-induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1-induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism. Vacuoles containing B. cenocepacia strain J2315, an isolate of the transmissible ET12 clone, recruited Rab5 and synthesized phosphatidylinositol-3-phosphate, indicating progression to the early phagosomal stage. Despite the fact that the B. cenocepacia-containing vacuoles rarely fused with lysosomes, they could nevertheless acquire the late phagosomal markers CD63 and Rab7. Fluorescence recovery after photobleaching and use of a probe that detects Rab7-guanosine triphosphate indicated that activation of Rab7 was impaired by B. cenocepacia, accounting at least in part for the inability of the vacuole to merge with lysosomes. The Rab7 defect was not due to excessive cholesterol accumulation and was confined to the infected vacuoles. Jointly, these experiments indicate that B. cenocepacia express virulence factors capable of interfering with Rab7 function and thereby with membrane traffic.