92 resultados para MTHFR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & objectives: Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and involved in DNA synthesis, DNA repair and DNA methylation. The two common functional polymorphisms of MTHFR, 677C -> T and 1298 A -> C have shown to impact several diseases including cancer. This case-control study was undertaken to analyse the association of the MTHFR gene polymorphisms 677 C -> T and 1298 A -> C and risk of colorectal cancer (CRC).Methods: One hundred patients with a confirmed histopathologic diagnosis of CRC and 86 age and gender matched controls with no history of cancer were taken for this study. DNA was isolated from peripheral blood samples and the genotypes were determined by PCR-RFLP. The risk association was estimated by compounding odds ratio (OR) with 95 per cent confidence interval (CI). Results: Genotype frequency of MTHFR 677 CC, CT and TT were 76.7, 22.1 and 1.16 per cent in controls, and 74,25 and 1.0 per cent among patients. The 'T' allele frequency was 12.21 and 13.5 per cent in controls and patients respectively. The genotype frequency of MTHFR 1298 AA, AC, and CC were 25.6, 58.1 and 16.3 per cent for controls and 22, 70 and 8 per cent for patents respectively. The 'C' allele frequency for 1298 A -> C was 43.0 and 45.3 per cent respectively for controls and patients. The OR for 677 CT was 1.18 (95% CI 0.59-2.32, P = 0.642), OR for 1298 AC was 1.68 (95% CI 0.92-3.08, P = 0.092) and OR for 1298 CC was 0.45(95% CI 0.18-1.12, P = 0.081). The OR for the combined heterozygous state (677 CT and 1298 AC) was 1.18(95% CI 0.52-2.64, P =0.697).Interpretation & conclusion: The frequency of the MTHFR 677 TT genotype is rare as compared to 1298 CC genotype in the population studied. There was no association between 677 C -> T and 1298 A -> C polymorphisms and risk of CRC either individually or in combination. The homozygous state for 1298 A -> C polymorphism appears to slightly lower risk of CRC. This needs to be confirmed with a larger sample size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.METHODS:We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates [greater than or equal to]80%, HWE p [greater than or equal to] 0.001, and MAF [greater than or equal to]10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.RESULTS:Heritability estimates for all bone phenotypes were 30-66%. LOD scores [greater than or equal to]3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10-6 and 2.5 x 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer (PC) is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases) who attended the Durham Veteran American Medical Center between 2004-2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95%CI 1.1-3.9) The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32- 5.73). The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR = 6.7; 95%CI = 1.6-27.8), compared to MTHFR A1298A noncarrier men (OR = 0.9; 95%CI = 0.24-3.92) (p-interaction = 0.045). There was no evidence for associations between B vitamins (folate, B12, and B6) and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Elevated homocysteine is associated with ischaemic heart disease (IHD). The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene results in reduced MTHFR enzyme activity and reduced methylation of homocysteine to methionine resulting in mild hyperhomocysteinaemia. Case-control association studies of the role of the C677T MTHFR polymorphism in IHD have produced conflicting results. We therefore used newly described family-based association tests to investigate the role of this polymorphism in IHD, in a well-defined population. Methods: A total of 352 individuals from 129 families (discordant sibships and parent-child trios) were recruited. Linkage disequilibrium between the polymorphism and IHD was tested for using the combined transmission disequilibrium test (TDT)/sib-TDT and pedigree disequilibrium test (PDT). Homocysteine levels were measured. Results: Both the TDT/sib-TDT and PDT analyses found a significantly reduced transmission of the T allele to affected individuals (P=0.016 and P=0.021). There was no significant difference in homocysteine levels between affected and unaffected siblings. TT homozygotes had mean homocysteine levels significantly higher than those of TC heterozygotes (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the role of plasma total homocysteine (tHcy) concentrations and homozygosity for the thermolabile variant of the methylenetetrahydrofolate reductase (MTHFR) C677T gene as risk factors for retinal vascular occlusive disease.

Design: Retinal vein occlusion (RVO) is an important cause of vision loss. Early meta-analyses showed that tHcy was associated with an increased risk of RVO, but a significant number of new studies have been published. Participants and/or Controls: RVO patients and controls.

Methods: Data sources included MEDLINE, Web of Science, and PubMed searches and searching reference lists of relevant articles and reviews. Reviewers searched the databases, selected the studies, and then extracted data. Results were pooled quantitatively using meta-analytic methods.

Main Outcome Measures: tHcy concentrations and MTHFR genotype.

Results: There were 25 case-control studies for tHcy (1533 cases and 1708 controls) and 18 case-control studies for MTHFR (1082 cases and 4706 controls). The mean tHcy was on average 2.8 mol/L (95% confidence
interval [CI], 1.8 –3.7) greater in the RVO cases compared with controls, but there was evidence of between-study heterogeneity (P0.001, I2 93%). There was funnel plot asymmetry suggesting publication bias. There was no evidence of association between homozygosity for the MTHFR C677T genotype and RVO (odds ratio [OR] 1.20; 95% CI, 0.84–1.71), but again marked heterogeneity (P 0.004, I2 53%) was observed.

Conclusions: There was some evidence that elevated tHcy was associated with RVO, but not homozygosity for the MTHFR C677T genotype. Both analyses should be interpreted cautiously because of marked heterogeneity between the study estimates and possible effect of publication bias on the tHcy findings.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild hyperhomocysteinemia is accepted as a risk factor for premature cardiovascular disease. In a population with a high prevalence of cardiovascular disease, we screened a group of clinically healthy working men aged 30-49 y (n = 509) for plasma homocysteine and 5,10-methylene tetrahydrofolate reductase (MTHFR) genotype status. Those with mildly elevated homocysteine concentrations (> or = 8.34 micromol/L) were selected for intervention. In a randomized, factorial-design, controlled trial we assessed the effects of B-group vitamins and antioxidant vitamin supplementation on homocysteine concentrations. The 132 men were randomly assigned to one of four groups: supplementation with B-group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, and 0.02 mg cyanocobalamin), antioxidant vitamins alone (150 mg ascorbic acid, 67 mg RRR-alpha-tocopherol, and 9 mg beta-carotene), B-group vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-wk intervention. When homocysteine concentrations were analyzed by group, significant (P <0.001) decreases (32.0% and 30.0%, respectively) were observed in both groups receiving B-group vitamins either with or without antioxidants. The effect of B-group vitamins alone over 8 wk was a reduction in homocysteine concentrations of 27.9% (95% CI: 22.0%, 33.3%; P <0.001) whereas antioxidants alone produced a nonsignificant increase of 5.1% (95% CI: -2.8%, 13.6%; P = 0.21). There was no evidence of any interaction between the two groups of vitamins. The effect of B-group vitamin supplementation seemed to depend on MTHFR genotype. Supplementation with the B-group vitamins with or without antioxidants reduced homocysteine in the men with mildly elevated concentrations, and hence may be effective in reducing cardiovascular risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild hyperhomocysteinaemia is a major risk factor for vascular disease and neural tube defects (NTDs), conferring an approximately three-fold relative risk for each condition. It has several possible causes: heterozygosity for rare loss of function mutations in the genes for 5,10-methylene tetrahydrofolate reductase (MTHFR) or cystathionine-beta-synthase (CBS); dietary insufficiency of vitamin co-factors B6, B12 or folates; or homozygosity for a common 'thermolabile' mutation in the MTHFR gene which has also been associated with vascular disease and NTDs. We quantified the contribution of the thermolabile mutation to the hyperhomocysteinaemic phenotype in a working male population (625 individuals). Serum folate and vitamin B12 concentrations were also measured and their relationship with homocysteine status and MTHFR genotype assessed. The homozygous thermolabile genotype occurred in 48.4, 35.5, and 23.4% of the top 5, 10, and 20% of individuals (respectively) ranked by plasma homocysteine levels, compared with a frequency of 11.5% in the study population as a whole, establishing that the mutation is a major determinant of homocysteine levels at the upper end of the range. Serum folate concentrations also varied with genotype, being lowest in thermolabile homozygotes. The MTHFR thermolabile genotype should be considered when population studies are designed to determine the effective homocysteine-lowering dose of dietary folate supplements, and when prophylactic doses of folate are recommended for individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This cross-sectional study assessed relationships between plasma homocysteine, 'thermolabile' methylenetetrahydrofolatereductase (MTHFR) genotype, B vitamin status and measures of renal function in elderly (70-89 years) and nonagenarian (90+ years) subjects, with the hypothesis that octo/nonagenarian subjects who remain healthy into old age as defined by 'Senieur' status might show reduced genetic or environmental risk factors usually associated with hyperhomocysteinaemia. Plasma homocysteine was 9.1 micromol/l (geometric mean [GM]) for all elderly subjects. Intriguingly, homocysteine was significantly lower in 90+ (GM; 8.2 micromol/l) compared to 70-89-year-old subjects (GM; 9.8 micromol/l) despite significantly lower glomerular filtration rate (GFR) and serum B12 in nonagenarian subjects and comparable MTHFR thermolabile (TT) genotype frequency, folate and B6 status to 70-89-year-olds. For all elderly subjects, the odds ratio and 95% confidence intervals for plasma homocysteine being in the highest versus lowest quartile was 4.27 (2.04-8.92) for age 90 years, 3.4 (1.5-7.8) for serum folate 10.7nmol/l, 3.0 (0.9-10.2) for creatinine >140 compared

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The genetic variation which underlies the thermolability and low enzyme activity of 5,10-methylenetetrahydrofolate reductase (MTHFR; C677T) has been extensively studied in many populations, including the Irish population.

AIM: To describe the examination of the C677T substitution in two new control samples drawn from the Irish population.

METHODS: A collection of 487 serum samples was obtained through the blood transfusion services of both the Republic of Ireland and Northern Ireland and a further 115 samples from volunteers.

RESULTS: In both samples, the frequency of the thermolabile/low enzyme activity allele (T) was higher than that previously reported for the Irish population.

CONCLUSION: This finding thus supports the need for a greater use of internal control/family-based association studies, as opposed to the classic case control study design, when assessing the contribution of the MTHFR T allele to disease processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Doenças Metabólicas e Comportamento Alimentar, Faculdade de Medicina, Universidade de Lisboa, 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.