1000 resultados para MONOALKYL CARBONATES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although alkyl carbonic acids (ACAs) and their salts are referred to as instable species in aqueous medium, we demonstrate that a monoalkyl carbonate (MAC) can in fact be easily formed from bicarbonate and an alcohol even in the presence of a high amount of water. A CE system with two capacitively coupled contactless conductivity detectors (C(4)Ds) was used to obtain different parameters about these species and their reactions. Based on the mobilities obtained for a series of alcohols ranging from 1 to 5 carbons, the coefficients of diffusion and the hydrodynamic radii were calculated. When compared with the equivalent carboxylates, MACs have radii systematically smaller. Although the precise pK(a) values of the ACAs could not be obtained, because of the fast decomposition in acid medium, it was possible, for the first time, to show that they are below 4.0. This result suggests that the acidity of an ACA is quite similar to the first hydrogen of H(2)CO(3). Using a new approach to indirectly calibrate the C(4)D, the kinetic constants and the equilibrium constants of formation were also obtained. The results suggest that the increase in the chain length makes the MACs less stable and more inert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of monoethyl carbonate (MEC) in beer and sparkling wine is demonstrated for the first time, as well as the formation of this species in drinks prepared with a distilled beverage and a carbonated soft drink. A capillary electrophoresis (CE) equipment with two capacitively coupled contactless conductivity detector ((CD)-D-4) was used to identify and quantify this species. The concentrations of MEC in samples of lager beer and rum and cola drink were, respectively, 1.2 and 4.1 mmol/l, which agree with the levels of ethanol and CO2 available in these products. Previous results about the kinetics of the reaction suggest that only a small amount of MEC should be formed after the ingredients of a drink are mixed. However, in all three cases (whisky and club soda: rum with cola; gin and tonic water), MEC was quickly formed, which was attributed to the low pH of the drinks. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation and properties of carbonate adducts of some organic hydroxy compounds in aqueous medium were investigated. Fatty alcohols and sugars were chosen as representative classes of biological interest, and the medium was carbonated aqueous solution with pH ranging from 3.0 to 8.3. Capillary electrophoresis with two capacitively coupled contactless conductivity detectors (C4Ds) was used for quantitation and to obtain the mobility of the monoalkyl carbonates (MACs), which were used to determine the equilibrium and kinetic constants of the reaction as well as the diffusion coefficients. For increasing chain length of the alcohols, the equilibrium constant tends to the unit, which suggests that fatty alcohols can form the corresponding MACs. The formation of MACs for cyclohexanol and cyclopentanol also suggest the existence of similar species for sterols. Carbonate adducts of fructose, glucose, and sucrose were also detected, which suggests that these counterparts of the well-known phosphates can also occur in the cytosol. Our calculations suggest that one in 1000 to one in 10 000 molecules of these hydroxy compounds would be available as the corresponding MAC in such a medium. Experiments carried out at pH values less than 3.0 showed that there is a catalytic effect of hydronium on the interconversion of bicarbonate and a MAC. Taking into account the great number of hydroxy compounds similar to the ones investigated and that bicarbonate is ubiquitous in living cells, one can anticipate the existence of a whole new class of carbonate adducts of these metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral decrespignyite (Y,REE)4Cu(CO3)4Cl(OH)5•2(H2O) and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands are at 1056, 1070 and 1088 cm-1 attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. Raman bands of decrespignyite show bands at 1391, 1414, 1489 and 1547 cm-1. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm-1 assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm-1and assigned to the (CO3)2- ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm-1 and are assigned to the (CO3)2- ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm-1 for bastnasite, 736 and 684 cm-1 for parisite, 714 cm-1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite indicating the presence of water and OH units in the mineral structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm−1 with shoulder bands at 1061 and 1073 cm−1, attributed to the View the MathML source symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of View the MathML source symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm−1 are assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm−1 is assigned to the (CO3)2− ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm−1 are assigned to the (CO3)2− ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marble from the Chillagoe deposits was extensively used in the construction of Australia’s parliament house. Near infrared (NIR) spectroscopy has been applied to study the quality of marble from the Chillagoe marble deposits and to distinguish between different types of marble in the Chillagoe deposits. A comparison of the NIR spectra of marble with dolomite and monohydrocalcite is made. The spectrum of the marble closely resembles that of monohydrocalcite and is different from that of dolomite. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra. Marble is characterised by NIR bands at 4005, 4268 and 4340 cm–1, attributed to carbonate combination bands and overtones. Marble also shows NIR bands at 5005, 5106, 5234 and 5334 cm–1 assigned to water combination bands. Finally the NIR spectrum of the marble displays broad low-intensity features centred upon 6905 cm–1 attributed to the water first overtones. It appears feasible to identify marble through the use of NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystals of orthorhobic carbonates RCO3 (R = Sr, Ba and Pb) were synthesised for the first time using formic acid as mineraliser. The unit cell parameters of this synthetic pure carbonates are: BaCO3:a=5.309, B=8.889, C=6.401; srCO3:a=5.108, B=8.420, C=6.040; PbCO3: A=5.176, B=8.511, C=6.137.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase diagrams for ternary Ln2O3-H2O-CO2 systems for the entire lanthanide series (except promethium) were studied at temperatures in the range 100–950 °C and pressures up to 3000 bar. The phase diagrams obtained for the heavier lanthanides are far more complex, with the appearance of a number of stable carbonate phases. New carbonates isolated from lanthanide systems (Ln ≡ Tm, Yb, Lu) include Ln6(OH)4(CO3)7, Ln4(OH)6-(CO3)3, Ln2O(OH)2CO3, Ln6O2(OH)8(CO3)3 and Ln12O7(OH)10(CO3)6. Stable carbonate phases common to all the lighter lanthanides are hexagonal LnOHCO3 and hexagonal Ln2O2CO3. Ln2(CO3)3• 3H2O is stable from samarium onwards and orthorhombic LnOHCO3 is stable from gadolinium onwards. On the basis of the appearance of stable carbonates, four different groups of lanthanides were established: lanthanum to neodymium, promethium to europium, terbium to erbium and thulium to lutetium. Gadolinium is the connecting element between groups II and III. This is in accordance with the tetrad classification for f transition elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protection of the amino group and activation of the carboxylic acid groups are the most important steps associated with any peptide synthesis protocol; hence, a one-pot process to achieve these is highly desirable. A possible strategy is to use pentafluorophenyl carbonates to simultaneously protect the amino group as a carbamate derivative and activate the carboxylic acid group as a pentafluorophenyl ester. A detailed study is carried out to understand the scope and limitations of this method using five different pentaflurophenyl carbonates. The efficiency of these one-pot reactions depends largely on the nature of the pentafluorophenyl carbonates and also on the nature of the amino acids. Electron deficient and sterically less demanding carbonates reacted faster than the others, whereas amino acids with longeraliphatic side chains gave better yields than more polar amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of three different types of carbonates of praseodymium, neodymium and terbium has been described. The carbonates have been characterized by potentiometry, chemical analysis, X-ray crystallography, infra-red spectroscopy and by their thermal behaviour. The thermal decomposition of several carbonates has been studied exhaustively under a variety of conditions and the stoicheiometry, thermodynamics and energetics of the reactions at various stages of decomposition have been examined. The stoicheiometry of the oxides obtained as final products of decomposition has been examined.