960 resultados para MOLECULAR EVOLUTION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants (∼200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots. © 2006 Federation of European Biochemical Societies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nos últimos anos, duas espécies de lagostas sapateiras, Scyllarides brasiliensis e S. deceptor, vêm se destacando nos desembarques pesqueiros de lagostas do Atlântico Sul Ocidental. Para espécies comercialmente importantes, o desenvolvimento de estudos que permitam conhecer a variabilidade e entender a dinâmica populacional é fundamental. Assim, o objetivo do primeiro capítulo desta tese foi avaliar a diversidade genética e a estrutura populacional dessas duas lagostas ao longo de aprox. 2.800 km da costa da América do Sul. Para as análises, foram empregados marcadores mitocondriais (citocromo oxidase I: COI; e a região controle: RC) e marcadores nucleares (13 loci de microssatélites desenvolvidos nesta tese). As duas espécies apresentaram altos níveis de variabilidade (S. deceptor: N = 200, mtDNA: h > 0,841, π > 0,005; microssatélites: He = 0,685; S. brasiliensis: N = 211, He = 0,554), distribuídos homogeneamente entre as localidades (S. deceptor: ΦST < -0,004, ΦCT < 0,016, FST global = 0,001, Dest global = 0,003, FCT < 0,002, P > 0,05, K = 1; S. brasiliensis: FST global = 0,004, Dest global = 0,001, FCT < 0,004, P > 0,05, K = 1). A ausência de estruturação nas duas espécies pode estar relacionada a características biológicas que promovem a conectividade entre localidades geograficamente distantes, como alta fecundidade e alto potencial de dispersão das larvas planctônicas. Além disso, os dados mitocondriais sugerem que a história demográfica de S. deceptor foi marcada por eventos de expansão populacionais e geográficos possivelmente relacionados às condições ambientais favoráveis dos episódios interglaciais do Pleistoceno Médio-Tardio. Diversos estudos têm mostrado que os fenômenos de inserção de regiões mitocondriais no DNA nuclear (NuMts) e heteroplasmia limitam a correta amplificação e identificação dos marcadores mitocondriais. Em estudos filogenéticos e de genética de populações, a presença inadvertida de sequências de diversas origens viola o principio de ortologia, o que pode resultar em inferências evolutivas erradas. Assim, o objetivo do segundo capítulo desta tese foi identificar e caracterizar os possíveis NuMts e sequências heteroplásmicas de três regiões mitocondriais (COI, RC e o gene da subunidade maior do RNA ribossomal: 16S) em quatro espécies do gênero Scyllarides (S. aequinoctialis, S. brasiliensis, S. deceptor e S. delfosi). A clonagem e sequenciamento de extratos de DNA genômico e DNA enriquecido com mtDNA revelaram que os genomas destas espécies podem exibir NuMts (que divergem entre 0,6 e 17,6% do mtDNA) e heteroplasmia (que divergem < 0,2% do mtDNA prevalente). Os NuMts surgiram possivelmente de vários eventos independentes de integração ao núcleo ao longo da história evolutiva do gênero Scyllarides. Dependendo do seu grau de similaridade com o mtDNA, a presença de NuMts nas análises filogenéticas no nível de gênero pode causar superestimativa do número de espécies e alterações nos comprimentos dos ramos e nas relações filogenéticas entre espécies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extracellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gatherer, D., and McEwan, N.R. (2003). Analysis of sequence periodicity in E. coli proteins: empirical investigation of the 'duplication and divergence' theory of protein evolution. Journal of Molecular Evolution 57, 149-158. RAE2008

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS: We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. CONCLUSIONS: These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many molecular ecological and evolutionary studies sample wild populations at a single point in time, failing to consider that data they collect represents genetic variation from a potentially unrepresentative snapshot in time. Variation across time in genetic parameters may occur quickly in species that produce multiple generations of offspring per year. However, many studies of rapid contemporary microevolution examine phenotypic trait divergence as opposed to molecular evolutionary divergence. Here, we compare genetic diversity in wild caught populations of Drosophila persimilis and D. pseudoobscura collected 16 years apart at the same time of year and same site at four X-linked and two mitochondrial loci to assess genetic stability. We found no major changes in nucleotide diversity in either species, but we observed a drastic shift in Tajima’s D between D. pseudoobscura timepoints at one locus associated with the increased abundance of a set of related haplotypes. Our data also suggests that D. persimilis may have recently accelerated its demographic expansion. While the changes we observed were modest, this study reinforces the importance of considering potential temporal variation in genetic parameters within single populations over short evolutionary timescales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O gene ataxin-3 (ATXN3; 14q32.1) codifica uma proteína expressa ubiquamente, envolvida na via ubiquitina-proteassoma e na repressão da transcrição. Grande relevância tem sido dada ao gene ATXN3 após a identificação de uma expansão (CAG)n na sua região codificante, responsável pela ataxia mais comum em todo o mundo, SCA3 ou doença de Machado-Joseph (DMJ). A DMJ é uma doença neurodegenerativa, autossómica dominante, de início tardio. O tamanho do alelo expandido explica apenas uma parte do pleomorfismo da doença, evidenciando a importância do estudo de outros modificadores. Em doenças de poliglutaminas (poliQ), a toxicidade é causada por um ganho de função da proteína expandida; no entanto, a proteína normal parece ser, também, um dos agentes modificadores da patogénese. O gene ATXN3 possui dois parálogos humanos gerados por retrotransposição: ataxin-3 like (ATXN3L) no cromossoma X, e LOC100132280, ainda não caracterizado, no cromossoma 8. Estudos in vitro evidenciaram a capacidade da ATXN3L para clivar cadeias de ubiquitina, sendo o seu domínio proteolítico mais eficiente do que o domínio da ATXN3 parental. O objetivo deste estudo foi explorar a origem e a evolução das retrocópias ATXN3L e LOC100132280 (aqui denominadas ATXN3L1 e ATXN3L2), assim como testar a relevância funcional de ambas através de abordagens evolutivas e funcionais. Deste modo, para estudar a divergência evolutiva dos páralogos do gene ATXN3: 1) analisaram-se as suas filogenias e estimou-se a data de origem dos eventos de retrotransposição; 2) avaliaram-se as pressões seletivas a que têm sido sujeitos os três parálogos, ao longo da evolução dos primatas; e 3) explorou-se a evolução das repetições CAG, localizadas em três contextos genómicos diferentes, provavelmente sujeitos a diferentes pressões seletivas. Finalmente, para o retrogene que conserva uma open reading frame (ORF) intacta, ATXN3L1, analisou-se, in silico, a conservação dos locais e domínios proteicos da putativa proteína. Ademais, para este retrogene, foi estudado o padrão de expressão de mRNA, através da realização de PCR de Transcriptase Reversa, em 16 tecidos humanos. Os resultados obtidos sugerem que dois eventos independentes de retrotransposição estiveram na origem dos retrogenes ATXN3L1 e ATXN3L2, tendo o primeiro ocorrido há cerca de 63 milhões de anos (Ma) e o segundo após a divisão Platirrínios-Catarrínios, há cerca de 35 Ma. Adicionalmente, outras retrocópias foram encontradas em primatas e outros mamíferos, correspondendo, no entanto, a eventos mais recentes e independentes de retrotransposição. A abordagem evolutiva mostrou a existência de algumas constrições selectivas associadas à evolução do gene ATXN3L1, à semelhança do que acontece com ATXN3. Por outro lado, ATXN3L2 adquiriu codões stop prematuros que, muito provavelmente, o tornaram num pseudogene processado. Os resultados da análise de expressão mostraram que o gene ATXN3L1 é transcrito, pelo menos, em testículo humano; no entanto, a optimização final da amplificação específica dos transcriptos ATXN3L1 permitirá confirmar se a expressão se estende a outros tecidos. Relativamente ao mecanismo de mutação inerente à repetição CAG, os dois parálogos mostraram diferentes padrões de evolução: a retrocópia ATXN3L1 é altamente interrompida e pouco polimórfica, enquanto a ATXN3L2 apresenta tratos puros de (CAG)n em algumas espécies e tratos hexanucleotídicos de CGGCAG no homem e no chimpanzé. A recente aquisição da repetição CGGCAG pode ter resultado de uma mutação inicial de CAG para CGG, seguida de instabilidade que proporcionou a expansão dos hexanucleótidos.Estudos futuros poderão ser realizados no sentido de confirmar o padrão de expressão do gene ATXN3L1 e de detetar proteína endógena in vivo. Adicionalmente, a caracterização da proteina ataxina-3 like 1 e dos seus interatores moleculares poderá povidenciar informação acerca da sua relevância no estado normal e patológico.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a growing appreciation among evolutionary biologists that the rate and tempo of molecular evolution might often be altered at or near the time of speciation, i.e. that speciation is in some way a special time for genes. Molecular phylogenies frequently reveal increased rates of genetic evolution associated with speciation and other lines of investigation suggest that various types of abrupt genomic disruption can play an important role in promoting speciation via reproductive isolation. These phenomena are in conflict with the gradual view of molecular evolution that is implicit in much of our thinking about speciation and in the tools of modern biology. This raises the prospect of studying the molecular evolutionary consequences of speciation per se and studying the footprint of speciation as an active force in promoting genetic divergence. Here we discuss the reasons to believe that speciation can play such a role and elaborate on possible mechanisms for accelerated rates of evolution following speciation. We provide an example of how it is possible detect whether accelerated bursts of evolution occur in neutral and/or adaptive regions of genes and discuss the implications of rapid episodes of change for conventional models of molecular evolution. Speciation might often owe more to ephemeral and essentially arbitrary events that cause reproductive isolation than to the gradual and regular tug of natural selection that draws a species into a new niche.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cisregulatory regions play a dominant role in phenotypic evolution. Key words: ASPM, MCPH1, CDK5RAP2, CENPJ, brain, neurogenesis, primates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The toucan genus Ramphastos (Piciformes: Ramphastidae) has been a model in the formulation of Neotropical paleobiogeographic hypotheses. Weckstein (2005) reported on the phylogenetic history of this genus based on three mitochondrial genes, but some relationships were weakly supported and one of the subspecies of R. vitellinus (citreolaemus) was unsampled. This study expands on Weckstein (2005) by adding more DNA sequence data (including a nuclear marker) and more samples, including R v. citreolaemus. Maximum parsimony, maximum likelihood, and Bayesian methods recovered similar trees, with nodes showing high support. A monophyletic R. vitellinus complex was strongly supported as the sister-group to R. brevis. The results also confirmed that the southeastern and northern populations of R. vitellinus ariel are paraphyletic. X v. citreolaemus is sister to the Amazonian subspecies of the vitellinus complex. Using three protein-coding genes (COI, cytochrome-b and ND2) and interval-calibrated nodes under a Bayesian relaxed-clock framework, we infer that ramphastid genera originated in the middle Miocene to early Pliocene, Ramphastos species originated between late Miocene and early Pleistocene, and intra-specific divergences took place throughout the Pleistocene. Parsimony-based reconstruction of ancestral areas indicated that evolution of the four trans-Andean Ramphastos taxa (R. v. citreolaemus, R. a. swainsonii, R. brevis and R. sulfuratus) was associated with four independent dispersals from the cis-Andean region. The last pulse of Andean uplift may have been important for the evolution of R. sulfuratus, whereas the origin of the other trans-Andean Ramphastos taxa is consistent with vicariance due to drying events in the lowland forests north of the Andes. Estimated rates of molecular evolution were higher than the ""standard"" bird rate of 2% substitutions/site/million years for two of the three genes analyzed (cytochrome-b and ND2). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The natriuretic peptide (NP) family consists of multiple subtypes in teleosts, including atrial, B-type, ventricular, and C-type NPs (ANP, BNP, VNP, CNP-1–4, respectively), but only ANP, BNP, CNP-3, and CNP-4 have been identified in tetrapods. As part of understanding the molecular evolution of NPs in the tetrapod lineage, we identified NP genes in the chicken genome. Previously, only BNP and CNP-3 have been identified in birds, but we characterized two new chicken NP genes by cDNA cloning, synteny and phylogenetic analyses. One gene is an orthologue of CNP-1, which has only ever been reported in teleostei and bichir. The second gene could not be assigned to a particular NP subtype because of high sequence divergence and was named renal NP (RNP) due to its predominant expression in the kidney. CNP-1 mRNA was only detected in brain, while CNP-3 mRNA was expressed in kidney, heart, and brain. In the developing embryo, BNP and RNP transcripts were most abundant 24 h post-fertilization, while CNP mRNA increased in a stage-dependant manner. Synthetic chicken RNP stimulated an increase in cGMP production above basal level in chicken kidney membrane preparations and caused a potent dose-dependant vasodilation of pre-constricted dorsal aortic rings. From conserved chromosomal synteny, we propose that the CNP-4 and ANP genes have been lost in chicken, and that RNP may have evolved from a VNP-like gene. Furthermore, we have demonstrated for the first time that CNP-1 is retained in the tetrapod lineage.