444 resultados para MICROTUBULE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μM lead chloride and 0.05 μM lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μM lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μM. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μM and reached half-maximal inhibition of motility at about 50 μM. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 μM, and inhibition is complete at about 10 μM. In this range, the tubulin assembly is fully (up to 6 μM) or partially (∼6-10 μM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect- concentration for inhibition of microtubule assembly in vitro was 1 μM Hg2+, the IC50 5.8 μM. Mercury(II) salts at the IC 50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a "gliding assay" mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 μM and a complete inhibition is reached at 1 μM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 μM HgCl2. Between 15 and 20 μM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 μM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations (100 μM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg 2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(II) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1 μM of complexed Hg(II), and for inhibition of motility it was 0.05 μM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 μM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytological changes and subsequent mitotic processes were studied in gynogenetically activated eggs of olive flounder subjected to cold-shock treatment using indirect immunofluorescence staining of isolated blastodisks. Obvious differences between controls and treated eggs were detected during early cell division. The developmental process of haploid control was similar to that of the diploid control except several minutes delayed. Spindles disassembled by the cold-shock treatment regenerated soon after treatment, resulting in the occurrence of the first mitosis. The immature daughter centriole was easily depolymerized by cold-shock treatment, leading to the formation of the bipolar spindle in the first cell cycle and the formation of the monopolar spindle in the second cell cycle, resulting in chromosome set doubling. Some two-cell stage eggs had a monopolar spindle in one blastomere and a bipolar spindle in another during the second mitosis. These eggs had a high potency developing into haploid-diploid mosaics. To the best of our knowledge, this study is the first to clarify the mechanism of chromosome set doubling in marine fishes and provides a preliminary cytological basis for developing a reliable and efficient protocol for mitotic gynogenesis induction by cold-shock treatment in olive flounder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the microtubule inhibitors colchicine (1 x 10(-3) M) and tubulozole-C(1 x 10(-6) M) on the ultrastructure of adult Fasciola hepatica has been determined in vitro by transmission electron microscopy (TEM), using both intact flukes and tissue-slice material. With colchicine treatment, the apical membrane of the tegument became increasingly convoluted and blebbed, while accumulations of T1 secretory bodies occurred in the basal region of the syncytium, leading to progressively fewer secretory bodies in the syncytium. In the tegumental cells there were distinct accumulations of Tl secretory bodies around the Golgi complexes, which remained active for up to 12 h incubation. Tubulozole-treated flukes showed more severe effects, with initial accumulations of secretory bodies, both at the tegumental apex and base. This was followed in the later time-periods by the sloughing of the tegumental syncytium. In the underlying tegumental cells, the granular endoplasmic reticulum (GER) cisternae were swollen and disrupted, becoming concentrated around the nucleus. The Golgi complexes were dispersed to the periphery of the cells and gradually disappeared from the cytoplasm. After treatment with both drugs, the cell population in the vitelline follicles was altered, with an abnormally large proportion of stem cells and relatively few intermediate type 1 cells. The nurse cell cytoplasm became fragmented and was no longer in contact with the vitelline cells, while the shell globule clusters within the intermediate type 2 and mature cells were loosely packed. In the mature vitelline cells, 'yolk' globules and glycogen deposits became fewer than normal and lipid droplets were observed. The results are discussed in relation to the different modes of action of the two drugs and potential significance of this to anthelmintic (benzimidazole) therapy.