999 resultados para MEK inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS: Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS: alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS: Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is resistant to chemotherapy. We reported that sirolimus, an mTOR inhibitor, has antiangiogenic properties in HCC. Since antiangiogenic therapy may enhance chemotherapy effects, we tested the antitumorigenic properties of sirolimus combined with doxorubicin in experimental HCC. METHODS: Morris Hepatoma (MH) cells were implanted into livers of syngeneic rats. Animals were assigned to sirolimus, pegylated liposomal doxorubicin, both combined or control groups. Tumoral growth was followed by MRI. Antiangiogenic effects were assessed by CD31 immunostaining and capillary tube formation assays. Cell proliferation was monitored in vitro by thymidine incorporation. Expression of p21 and phosphorylated MAPKAP kinase-2 was quantified by immunoblotting. RESULTS: Animals treated with the combination developed smaller tumors with decreased tumor microvessel density compared to animals that received monotherapies. In vitro, inhibition of mTOR further impaired capillary formation in the presence of doxorubicin. Doxorubicin reduced endothelial cell proliferation; inhibition of mTOR accentuated this effect. Doxorubicin stimulated p21 expression and the phosphorylation of MAPKAP kinase-2 in endothelial cells. Addition of mTOR inhibitor down-regulated p21, but did not decrease MAPKAP kinase-2 phosphorylation. CONCLUSIONS: Sirolimus has additive antitumoral and antiangiogenic effects when administered with doxorubicin. These findings offer a rationale for combining mTOR inhibitors with chemotherapy in HCC treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous confabulation is a rare memory disorder resulting from orbitofrontal damage or disconnection. Patients act on the basis of memories that do not pertain to the current situation, and are disoriented. No medical treatment is known. Recent studies suggest that subcortical dopaminergic structures are involved in the selection of currently relevant memories. We present a patient who regained the ability to adapt thought and behavior to ongoing reality when treated with risperidone, a dopamine antagonist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION: Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.