61 resultados para MDR1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudos recentes têm avaliado a presença de polimorfismos do gene multidroga resistente 1 (MDR1), que codifica o transportador de membrana de efluxo chamado de P-glicoproteína, seu potencial papel na suscetibilidade das doenças inflamatórias intestinais (DII) e suas possíveis correlações com aspectos clínicos das DII. Dados conflitantes podem resultar da análise genética de populações distintas. Investigamos se os polimorfismos do gene MDR1 estão associados com as DII em população do sudeste do Brasil e suas possíveis correlações com fenótipos, atividade de doença, resposta ao tratamento e efeitos colaterais. Como métodos, a presente pesquisa trabalhou com 146 pacientes com Doença de Crohn (DC) e 90 com Retocolite Ulcerativa Idiopática (RCUI), que foram recrutados através de critérios diagnósticos estabelecidos. Os polimorfismos do MDR1 mais comumente descritos na literatura, C1236T, G2677T e C3435T, foram avaliados por PCR. As frequências genotípicas de pacientes com RCUI e DC foram analisadas na população de estudo. Associações de genótipo-fenótipo com características clínicas foram estabelecidas e riscos estimados para as mutações foram calculados. Nenhuma diferença significativa foi observada nas freqüências genotípicas para os polimorfismos G2677T/A e C3435T do MDR1 na DC ou na RCUI. O polimorfismo C1236T foi significativamente mais comum na DC do que na RCUI (p = 0,036). Na RCUI foram encontrados mais homens nos polimorfismos C1236T e G2677T no grupo de heterozigotos. Foram encontradas associações significativas entre o polimorfismo C3435T do gene MDR1 em pacientes com fenótipo estenosante na DC (OR: 3,16, p = 0,036), em oposição ao comportamento penetrante (OR: 0,31, p = 0,076). Na DC, associações positivas também foram encontradas entre o polimorfismo C3435T, à atividade moderada/severa da doença (OR: 3,54, p = 0,046), e à resistência / refratariedade ao corticosteróide (OR: 3,29, p = 0,043) nos homozigotos polimórficos. Nenhuma associação significativa foi encontrada entre os polimorfismos do MDR1 e categorias fenotípicas, atividade de doença ou resposta ao tratamento da RCUI. Em conclusão, os resultados do presente estudo sugerem que os polimorfismos do gene MDR1 poderiam estar implicados na susceptibilidade a DC e no seu fenótipo estenosante, como também estarem associados com uma resposta inadequada ao tratamento em um grupo de pacientes com DC. A forte relação com a DC suporta a existência de papéis adicionais para o MDR1 em mecanismos específicos subjacentes na patogênese da DC, como o controle da microbiota intestinal, mediação e regulação da fibrose. Além disso, compreender os efeitos de vários fármacos associados a estas variantes do MDR1 pode contribuir para a prescrição personalizada de regimes terapêuticos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-drug resistance (MDR) may compromise the successful management of haematological malignancies, impairing the effectiveness of chemotherapy. The P-glycoprotein (P-gp) drug efflux pump, encoded by the gene ABCB1 (MDR1), is the most widely studied component in MDR. A single nucleotide polymorphism (SNP) has been identified within ABCB1, rs1045642 (C3435T), which may alter P-gp substrate specificity and have an impact on the effectiveness of treatment, and hence overall survival (OS). We estimated the frequency of this SNP in the Northern Irish population and investigated its impact on the OS of patients with plasma cell myeloma (PCM). There was no significant difference in the frequency of rs1045642 between the PCM cohort and an age- and gender-matched control population. Findings within the PCM cohort suggest that rs1045642 genotype influences OS (p = 2 x 10(-2)). If confirmed in larger studies, these results suggest that genotyping rs1045642 may be a useful predictor of outcome in PCM and could indicate modified treatment modalities in certain individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O regime de tratamento com múltiplas drogas é correspondente a uma interação de drogas que pode causar efeitos adversos e falha no tratamento. Essa interação pode gerar modificações funcionais dos transportadores de membrana e por consequência a biodisponibilidade das drogas durante o tratamento. Dentre os transportadores de drogas transmembranares está a glicoproteína-P (P-gp), uma proteína de 170KD, produto do gene MDR1, caracterizada como uma \201CATP Binding cassete\201D (ABC). Seu papel está muito bem definido nas células neoplásicas multirresistentes a drogas, assim como sua relação com as drogas para o tratamento da infecção pelo HIV. Entretanto, pouco tem sido estudado sobre esta bomba de efluxo na tuberculose multirresistente (TBMR). Neste estudo analisamos por citometria de fluxo sua expressão e atividade de efluxo nos monócitos, principal célula relacionada com a tuberculose e também em linfócitos e granulócitos do sangue periférico por meio da citometria de fluxo. A taxa de efluxo foi medida através do uso da Rodamina 123 (Rho123) e a expressão da P-gp através do anticorpo monoclonal anti-CD243 (clone UIC2). A utilização direta do sangue total para a determinação da atividade de efluxo por citometria de fluxo caracterizou a implantação de uma nova ferramenta de análise para a pesquisa A análise contemplou 52% do total de pacientes em tratamento de TBMR no ambulatório do Laboratório de Pesquisa em Micobacterioses do Instituto de Pesquisa Clínica Evandro Chagas (IPEC). Para as análises foram levadas em consideração a idade, cor da pele, o tempo de tratamento e a quantidade de drogas administradas. O estudo revelou que há correlação entre a expressão da P-gp nos monócitos e a idade dos pacientes (P<0,01). Diferenças entre pacientes brancos e não brancos também foram observadas. Em linfócitos a expressão de P-gp quando aumentada foi diretamente proporcional à atividade de efluxo observada nos monócitos (P< 0,05). Além disso, pacientes submetidos ao tratamento para TBMR por até seis meses apresentaram uma maior expressão de P-gp e, linfócitos quando comparados àqueles que receberam o tratamento por mais de seis meses (P<0,01)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-glycoprotein is an adenosine triphosphate (ATP)-driven drug efflux carrier responsible for transport of xenobiotics and multiple classes of drugs, many usually use in veterinary medicine. Encoded by MDR1 gene, also referred to as ABCB1, located on chromosome 14, is expressed in many tissues with secretory or excretory functions, such as liver, kidney and intestine, where it limits drug absorption from the gut and promotes drug excretion into the bile and urine of their substrates. In 2001, a 4 base pair gene deletion mutation in the canine MDR1 gene was identified as MDR1-1▲, ABCB1-1▲, MDR1 MDR1 nt 230 (del4) and associated with an non-functional Pglycoprotein. The clinical correlation is the (hyper) sensitivity of certain dogs breeds, mostly collies, to a few classes of drugs such as anticancer drugs (doxorubicin, vincristine, vinblastine), immunosuppressants (cyclosporine), antiparasitic drugs (ivermectin, moxidectin), steroids hormones (aldosterone, cortisol, dexamethasone), antimicrobial agents (tetracycline, doxycycline, levofloxacin, ketoconazole, itraconazole), analgesics (morphine, methadone), antidiarrheals (loperamide), antiepileptic agents (phenothiazine), cardiac drugs (digoxin, diltiazem, verapamil, talinolol) and others. Dogs with homozygous MDR1 nt 230 (del4) MDR1 mutations (MDR1 - / -) have a higher predisposition to intoxication with substrates of P-gp than heterozygous (MDR1 + / -) and these are more likely than dogs homozygous nonmutant (MDR1 +/ +). After the identification of nt230 (del4) mutation, several molecular techniques have been developed for identification of mutant animals as a diagnostic method. The importance of molecular diagnosis is, after the identification of mutant animals, establish treatment protocols safe, exclude this animals from reproduction (genetic selection program) and investigating the history of adverse drugs reactions... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical resistance to chemotherapy in acute myeloid leukemia (AML) is associated with the expression of the multidrug resistance (MDR) proteins P-glycoprotein, encoded by the MDR1/ABCB1 gene, multidrug resistant-related protein (MRP/ABCC1), the lung resistance-related protein (LRP), or major vault protein (MVP), and the breast cancer resistance protein (BCRP/ABCG2). The clinical value of MDR1, MRP1, LRP/MVP, and BCRP messenger RNA (mRNA) expression was prospectively studied in 154 newly diagnosed AML patients >or=60 years who were treated in a multicenter, randomized phase 3 trial. Expression of MDR1 and BCRP showed a negative whereas MRP1 and LRP showed a positive correlation with high white blood cell count (respectively, p < 0.05, p < 0.001, p < 0.001 and p < 0.001). Higher BCRP mRNA was associated with secondary AML (p < 0.05). MDR1 and BCRP mRNA were highly significantly associated (p < 0.001), as were MRP1 and LRP mRNA (p < 0.001) expression. Univariate regression analyses revealed that CD34 expression, increasing MDR1 mRNA as well as MDR1/BCRP coexpression, were associated with a lower complete response (CR) rate and with worse event-free survival and overall survival. When adjusted for other prognostic actors, only CD34-related MDR1/BCRP coexpression remained significantly associated with a lower CR rate (p = 0.03), thereby identifying a clinically resistant subgroup of elderly AML patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major multidrug transporter P-glycoprotein (Pgp) contributes to the barrier function of several tissues and organs, including the brain. In a subpopulation of Collies and seven further dog breeds, a 4 base pair deletion has been described in the Pgp-encoding MDR1 gene. This deletion results in the absence of a functional form of Pgp and loss of its protective function. Severe intoxication with the Pgp substrate ivermectin has been attributed to the genetically determined lack of Pgp. An allele-specific polymerase chain reaction (PCR)-based screening method has been developed to detect the mutant allele and to determine if a dog is homozygous or heterozygous for the mutation. Based on this validation, the allele-specific PCR proved to be a robust, reproducible and specific tool, allowing rapid determination of the MDR1 genotype of dogs of at risk breeds using blood samples or buccal swabs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of functional p53 paradoxically results in either increased or decreased resistance to chemotherapeutic drugs. The inconsistent relationship between p53 status and drug sensitivity may reflect p53’s selective regulation of genes important to cytotoxic response of chemotherapeutic agents. We reasoned that the discrepant effects of p53 on chemotherapeutic cytotoxicity is due to p53-dependent regulation of the multidrug resistance gene (MDR1) expression in tumors that normally express MDR1. To test the hypothesis that wild-type p53 regulates the endogenous mdr1 gene we stably introduced a trans-dominant negative (TDN) p53 into rodent H35 hepatoma cells that express P-glycoprotein (Pgp) and have wild-type p53. Levels of Pgp and mdr1a mRNA were markedly elevated in cells expressing TDN p53 and were linked to impaired p53 function (both transactivation and transrepression) in these cells. Enhanced mdr1a gene expression in the TDN p53 cells was not secondary to mdr1 gene amplification and Pgp was functional as demonstrated by the decreased uptake of vinblastine. Cytotoxicity assays revealed that the TDN p53 cell lines were selectively insensitive to Pgp substrates. Sensitivity was restored by the Pgp inhibitor reserpine, demonstrating that only drug retention was the basis for loss of drug sensitivity. Similar findings were evident in human LS180 colon carcinoma cells engineered to overexpress TDN p53. Therefore, the p53 inactivation seen in cancers likely leads to selective resistance to chemotherapeutic agents because of up-regulation of MDR1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophilic domain containing the ATP-binding site. LmrA is similar to each of the two halves of MDR1 and may function as a homodimer. The sequence conservation between LmrA and MDR1 includes particular regions in the transmembrane domains and connecting loops, which, in MDR1 and the MDR1 homologs in other mammalian species, have been implicated as determinants of drug recognition and binding. LmrA and MDR1 extrude a similar spectrum of amphiphilic cationic compounds, and the activity of both systems is reversed by reserpine and verapamil. As LmrA can be functionally expressed in E. coli, it offers a useful prokaryotic model for future studies on the molecular mechanism of MDR1-like multidrug transporters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional expression of the multidrug resistance protein P-glycoprotein (P-gp) in Escherichia coli is providing an appropriate system for structure/function studies and might provide an invaluable tool to screen potential P-gp substrates and inhibitors. The major problem encountered in such studies, however, is the impermeability of the outer membrane of Gram-negative bacteria, which protects microorganisms against the cytotoxic effects of many lipophilic cancer drugs and blocks accessibility of P-gp reversal agents. In the present study we have constructed, by mutagenesis, a "leaky" (containing a permeable outer membrane) strain of E. coli, which is significantly more susceptible to the toxic effect of known P-gp substrates and cytotoxic agents. Expression of mouse Mdr1 in the mutant confers cross-resistance to daunomycin, quinidine, chloroquine, rhodamine 6G, and puromycin. Most importantly, reserpine and doxorubicin completely abolish Mdr1-mediated rhodamine resistance. The results provide strong support for previous observations, suggesting that Mdr1 can be expressed functionally in E. coli and indicate that the leaky mutant will be useful for further structure/function studies of the heterologously expressed eukaryotic drug efflux protein.