976 resultados para Lymphocyte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with several bilayer compositions. The highest average conductance was found in bilayers formed by phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylserine (70:30). The presence of cholesterol or cardiolipin substantially decreases the MP-1 pore activity, suggesting that the membrane fluidity influences the mechanism of selective toxicity. The determination of partition coefficients from the anisotropy of Tip indicated higher coefficients for the anionic bilayers. The partition coefficients were found to be 1 order of magnitude smaller when the bilayers contain cholesterol or a mixture of cholesterol and sphingomyelin. The blue shift fluorescence, anisotropy values, and Stern-Volmer constants are indications of a deeper penetration of MP-1 into anionic bilayers than into zwitterionic bilayers. Our results indicate that MP-1 prefers to target leukemic cell membranes, and its toxicity is probably related to the induction of necrosis and not to DNA fragmentation. This mode of action can be interpreted considering a number of bilayer properties like fluidity, lipid charge, and domain formation. Cholesterol-containing bilayers are less fluid and less charged and have a tendency to form domains. In comparison to healthy cells, leukemic T-lymphocyte membranes are deprived of this lipid, resulting in decreased peptide binding and lower conductance. We showed that the higher content of anionic lipids increases the level of binding of the peptide to bilayers. Additionally, the absence of cholesterol resulted in enhanced pore activity. These findings may drive the selective toxicity of MP-1 to Jurkat cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm³ [standard deviation (SD) = 99] and a mean viral load of 5.09 log10 copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno[clinical20%] algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naÏve HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct killing of target cells by cytotoxic T lymphocytes (CTLs) plays a fundamental role in protective immunity to viral, bacterial, protozoan and fungi infections, as well as to tumor cells. In vivo cytotoxic assays take into account the interaction of target and effector cells in the context of the proper microenvironment making the analysis biologically more relevant than in vitro cytotoxic assays. Thus, the development, improvement and validation of in vivo methods are necessary in view of the importance of the results they may provide. We describe and discuss in this manuscript a method to evaluate in vivo specific cytotoxic T lymphocyte killing. We used as model system mice immunized with human recombinant replication-deficient adenovirus 5 (HAd5) containing different transgenes as the trigger of a CTL-mediated immune response. To these mice, we adoptively transferred syngeneic cells labeled with different vital fluorescent dyes. Donor cells were pulsed (target) or not (control non-target) with distinct CD8 T-cell epitopes, mixed in a 1:1 ratio and injected i.v. into immunized or non-immunized recipient mice. After 18-24h, spleen cells are collected and analysed by flow cytometry. A deviation from the 1:1 ratio of control and target cell populations indicates antigen specific lysis of target cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well established that stromal intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) mediate lymphocyte recruitment into peripheral lymph nodes (PLNs), their precise contributions to the individual steps of the lymphocyte homing cascade are not known. Here, we provide in vivo evidence for a selective function for ICAM-1 > ICAM-2 > VCAM-1 in lymphocyte arrest within noninflamed PLN microvessels. Blocking all 3 CAMs completely inhibited lymphocyte adhesion within PLN high endothelial venules (HEVs). Post-arrest extravasation of T cells was a 3-step process, with optional ICAM-1-dependent intraluminal crawling followed by rapid ICAM-1- or ICAM-2-independent diapedesis and perivascular trapping. Parenchymal motility of lymphocytes was modestly reduced in the absence of ICAM-1, while ICAM-2 and alpha4-integrin ligands were not required for B-cell motility within follicles. Our findings highlight nonredundant functions for stromal Ig family CAMs in shear-resistant lymphocyte adhesion in steady-state HEVs, a unique role for ICAM-1 in intraluminal lymphocyte crawling but redundant roles for ICAM-1 and ICAM-2 in lymphocyte diapedesis and interstitial motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIV-1 negative factor (Nef) elevates virus replication and contributes to immune evasion in vivo. As one of its established in vitro activities, Nef interferes with T-lymphocyte chemotaxis by reducing host cell actin dynamics. To explore Nef's influence on in vivo recirculation of T lymphocytes, we assessed lymph-node homing of Nef-expressing primary murine lymphocytes and found a drastic impairment in homing to peripheral lymph nodes. Intravital imaging and 3D immunofluorescence reconstruction of lymph nodes revealed that Nef potently impaired T-lymphocyte extravasation through high endothelial venules and reduced subsequent parenchymal motility. Ex vivo analyses of transendothelial migration revealed that Nef disrupted T-lymphocyte polarization and interfered with diapedesis and migration in the narrow subendothelial space. Consistently, Nef specifically affected T-lymphocyte motility modes used in dense environments that pose high physical barriers to migration. Mechanistically, inhibition of lymph node homing, subendothelial migration and cell polarization, but not diapedesis, depended on Nef's ability to inhibit host cell actin remodeling. Nef-mediated interference with in vivo recirculation of T lymphocytes may compromise T-cell help and thus represents an important mechanism for its function as a HIV pathogenicity factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acute generalized exanthematous pustulosis (AGEP) is a rare cutaneous eruption which is often provoked by drugs. CASE REPORT: We report 2 cases of AGEP which showed rapidly spreading pustular eruptions accompanied by malaise, fever and neutrophilia after the administration of systemic prednisolone (corticosteroid of group A, hydrocortisone type). The histological examination showing neutrophilic subcorneal spongiform pustules was consistent with the diagnosis of AGEP. In both cases the rash cleared within a week upon treatment with topical steroids (corticosteroid of group D1, betamethasonedipropionate type and corticosteroid of group D2, hydrocortisone-17-butyrate type). Three months after recovery, the sensitization to corticosteroids of group A was confirmed by epicutaneous testing and positive lymphocyte transformation tests. CONCLUSION: These cases show that systemic corticosteroids can induce AGEP and demonstrate that epicutaneous testing and lymphocyte transformation tests may be helpful in identifying the causative drug. Our data support previous reports indicating an important role for drug-specific T cells in inducing neutrophil inflammation in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In natural history studies of chronic disease, it is of interest to understand the evolution of key variables that measure aspects of disease progression. This is particularly true for immunological variables in persons infected with the Human Immunodeficiency Virus (HIV). The natural timescale for such studies is time since infection. However, most data available for analysis arise from prevalent cohorts, where the date of infection is unknown for most or all individuals. As a result, standard curve fitting algorithms are not immediately applicable. Here we propose two methods to circumvent this difficulty. The first uses repeated measurement data to provide information not only on the level of the variable of interest, but also on its rate of change, while the second uses an estimate of the expected time since infection. Both methods are based on the principal curves algorithm of Hastie and Stuetzle, and are applied to data from a prevalent cohort of HIV-infected homosexual men, giving estimates of the average pattern of CD4+ lymphocyte decline. These methods are applicable to natural history studies using data from prevalent cohorts where the time of disease origin is uncertain, provided certain ancillary information is available from external sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)gamma, signaling molecules that act downstream of G protein-coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3Kgamma displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3Kgamma alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a G(alphai) protein-coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3Kgamma contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell-expressed PI3Kgamma contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3Kgamma, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell-expressed PI3Kgamma, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lymphocyte transformation response to the mitogen phytohaemagglutinin (PHA) was determined in 15 well controlled insulin-dependent diabetics (IDD) with a history of insulin allergy or an acute insulin allergy. There was no significant difference in the PHA response of IDD and normal subjects matched in respect of age and sex. The response of peripheral blood lymphocytes to insulin (Actrapid) and an insulin zinc suspension (Monotard) was also determined. Fifty-three percent of IDD gave a positive reaction to Actrapid. Monotard produced positive reactions both in IDD and normal subjects. In normal subjects, a close correlation between the stimulation indices of Monotard and PHA was found (r = 0 . 966) suggesting that these stimulations depend on a common parameter namely, the reactivity to mitogens.