921 resultados para Luus-Jaakola optimization method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new battery modelling method is presented based on the simulation error minimization criterion rather than the conventional prediction error criterion. A new integrated optimization method to optimize the model parameters is proposed. This new method is validated on a set of Li ion battery test data, and the results confirm the advantages of the proposed method in terms of the model generalization performance and long-term prediction accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the cell coverage optimization problem for the massive multiple-input multiple-output (MIMO) uplink. By deploying tilt-adjustable antenna arrays at the base stations, cell coverage optimization can become a promising technique which is able to strike a compromise between covering cell-edge users and pilot contamination suppression. We formulate a detailed description of this optimization problem by maximizing the cell throughput, which is shown to be mainly determined by the user distribution within several key geometrical regions. Then, the formulated problem is applied to different example scenarios: for a network with hexagonal shaped cells and uniformly distributed users, we derive an analytical lower bound of the ergodic throughput in the objective cell, based on which, it is shown that the optimal choice for the cell coverage should ensure that the coverage of different cells does not overlap; for a more generic network with sectoral shaped cells and non-uniformly distributed users, we propose an analytical approximation of the ergodic throughput. After that, a practical coverage optimization algorithm is proposed, where the optimal solution can be easily obtained through a simple one-dimensional line searching within a confined searching region. Our numerical results show that the proposed coverage optimization method is able to greatly increase the system throughput in macrocells for the massive MIMO uplink transmission, compared with the traditional schemes where the cell coverage is fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquesta tesi presenta un nou mètode pel disseny invers de reflectors. Ens hem centrat en tres temes principals: l’ús de fonts de llum reals i complexes, la definició d’un algoritme ràpid pel càlcul de la il•luminació del reflector, i la definició d’un algoritme d’optimització per trobar més eficientment el reflector desitjat. Les fonts de llum estan representades per models near-field, que es comprimeixen amb un error molt petit, fins i tot per fonts de llum amb milions de raigs i objectes a il•luminar molt propers. Llavors proposem un mètode ràpid per obtenir la distribució de la il•luminació d’un reflector i la seva comparació amb la il•luminació desitjada, i que treballa completament en la GPU. Finalment, proposem un nou mètode d’optimització global que permet trobar la solució en menys passos que molts altres mètodes d’optimització clàssics, i alhora evitant mínims locals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary synthesis methods, as originally described by Dobrowolski, have been shown in previous literature to be an effective method of obtaining anti-reflection coating designs. To make this method even more effective, the combination of a good starting design, the best suited thin-film materials, a realistic optimization target function and a non-gradient optimization method are used in an algorithm written for a PC. Several broadband anti-reflection designs obtained by this new design method are given as examples of its usefulness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study an optimization method for the design of combined solar and pellet heating systems is presented and evaluated. The paper describes the steps of the method by applying it for an example of system. The objective of the optimization was to find the design parameters that give the lowest auxiliary energy (pellet fuel + auxiliary electricity) and carbon monoxide (CO) emissions for a system with a typical load, a single family house in Sweden. Weighting factors have been used for the auxiliary energy use and CO emissions to give a combined target function. Different weighting factors were tested. The results show that extreme weighting factors lead to their own minima. However, it was possible to find factors that ensure low values for both auxiliary energy and CO emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular geometry, the three dimensional arrangement of atoms in space, is a major factor determining the properties and reactivity of molecules, biomolecules and macromolecules. Computation of stable molecular conformations can be done by locating minima on the potential energy surface (PES). This is a very challenging global optimization problem because of extremely large numbers of shallow local minima and complicated landscape of PES. This paper illustrates the mathematical and computational challenges on one important instance of the problem, computation of molecular geometry of oligopeptides, and proposes the use of the Extended Cutting Angle Method (ECAM) to solve this problem.

ECAM is a deterministic global optimization technique, which computes tight lower bounds on the values of the objective function and fathoms those part of the domain where the global minimum cannot reside. As with any domain partitioning scheme, its challenge is an extremely large partition of the domain required for accurate lower bounds. We address this challenge by providing an efficient combinatorial algorithm for calculating the lower bounds, and by combining ECAM with a local optimization method, while preserving the deterministic character of ECAM.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine numerical performance of various methods of calculation of the Conditional Value-at-risk (CVaR), and portfolio optimization with respect to this risk measure. We concentrate on the method proposed by Rockafellar and Uryasev in (Rockafellar, R.T. and Uryasev, S., 2000, Optimization of conditional value-at-risk. Journal of Risk, 2, 21-41), which converts this problem to that of convex optimization. We compare the use of linear programming techniques against a non-smooth optimization method of the discrete gradient, and establish the supremacy of the latter. We show that non-smooth optimization can be used efficiently for large portfolio optimization, and also examine parallel execution of this method on computer clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important problem in designing RFIC in CMOS technology is the parasitic elements of passive and active devices that complicate design calculations. This article presents three LNA topologies including cascode, folded cascade, and differential cascode and then introduces image rejection filters for low-side and high-side injection. Then, a new method for design and optimization of the circuits based on a Pareto-based multiobjective genetic algorithm is proposed. A set of optimum device values and dimensions that best match design specifications are obtained. The optimization method is layout aware, parasitic aware, and simulation based. Circuit simulations are carried out based on TSMC 0.18 um CMOS technology by using Hspice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)