954 resultados para Localized Surface Plasmon Resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(EN)Disclosed is a method of detecting bioproducts using Localized Surface Plasmon Resonance (LSPR) of gold nanoparticles, which can diagnose bioproducts based on changes in the maximum wavelength occurred by an antigen-antibody reaction after immobilization of the gold nanoparticles onto a glass panel. A sensor using such method exhibits high sensitivity, is low in price, and makes quick diagnosis possible, thereby being applicable to various biological fields associated with environmental contaminants, pathogens and the like, as well as diagnosis of diseases. Further, it provides a technology for manufacturing a sensor having higher sensitivity, low price and quick performance, as compared to conventional methods using SPR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the enhancement of the sensitivity and adsorption efficiency of a localized surface plasmon resonance (LSPR) biosensor that includes a layer of graphene sheet on top of the gold layer. For this purpose, biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film are monitored. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity and adsorption efficiency under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart. It is found that the LSPR graphene biosensor has better sensitivity with lower operating wavelength and larger number of graphene layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the enhancement of sensitivity of variable incidence angle LSPR biosensor by monitoring biomolecular interactions of biotin-streptavidin with gold thin film. The investigation is carried out by means of introducing an additional layer of graphene sheet on top of gold layer (graphene biosensor) and using different coupling configuration of laser beam. The sensitivity, which is indicated by the shift of plasmon resonance angle, increases with graphene deposited onto the gold layers and is linearly related with the number of graphene layers. In addition, an investigation of the shift of plasmon dip is carried out for two different analyte interfaces: air and water. It is found that graphene biosensor has better sensitivity for triangular prism, higher prism angle, and water interface. The evaluation approach involves a plot of a reflectivity curve as a function of the angle of incidence while the operating wavelength is kept fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved extinction spectra assisted with two-dimensional correlation spectroscopy (2DCOS) analysis and principal component analysis (PCA) were employed to investigate the interaction between bovine serum albumin (BSA) and metal nanoparticles (NPs). A series of localized surface plasmon resonance (LSPR) spectra of metal NPs were measured just after a small amount of BSA was added into metal colloids. Through 2DCOS analysis, remarkable changes in the intensities of the LSPR were observed. The interaction process was totally divided into three periods according to the PCA. Transmission electron microscopy, dynamic light scattering, and ζ-potential measurements were also employed to characterize the interaction between BSA and metal NPs. The addition of BSA brings silver NPs to aggregate through the electrostatic interaction between them, but it has less effect on gold NPs. In a gold and silver mixed system, gold NPs can affect the interaction of silver NPs and BSA, leading it to weaken. The combination of 2DCOS analysis and LSPR spectroscopy is powerful for exploring the LSPR spectra of the metal NP involved systems. This combined technique holds great potential in LSPR sensing through analysis of slight, slim spectral changes of metal colloids

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a multilayer localized surface plasmon resonance (LSPR) graphene biosensor that includes a layer of graphene sheet on top of the gold layer, and the use of different coupled configuration of a laser beam. The study also investigates the enhancement of the sensitivity and detection accuracy of the biosensor through monitoring biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film. Additionally, the role of thin films of gold, silver, copper and aluminum in the performance of the biosensor is separately investigated for monitoring the binding of streptavidin to the biotin groups. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity, adsorption efficiency, and detection accuracy under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart; however, detection accuracy under the same resonance condition is reduced by 5.2% with a single graphene sheet. This reduction in detection accuracy (signal to noise ratio) can be compensated for by introducing an additional layer of silica doped B2O3 (sdB2O3) placed under the graphene layer. The role of prism configuration, prism angle and the interface medium (air and water) is also analyzed and it is found that the LSPR graphene biosensor has better sensitivity with triangular prism, higher prism angle, lower operating wavelength and larger number of graphene layers. The approach involves a plot of a reflectivity curve as a function of the incidence angle. The outcomes of this investigation highlight the ideal functioning condition corresponding to the best design parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) is a promising detection method for label-free sensing of biomolecules. In this paper, a multilayer design for a LSPR biosensor is presented. In the proposed design, a periodic array of dielectric grating is incorporated on top of a graphene layer in the biosensor. The aim is to improve sensitivity of the LSPR biosensor through monitoring biomolecular interactions of biotin-streptavidin. Sensitivity improvement is obtained for the proposed LSPR biosensor compared with conventional SPR counterparts. In addition, to optimize the design, we have investigated grating geometry including volume factor and grating depth. The outcome of this investigation identifies ideal functioning conditions corresponding to the best design parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel sinusoidal shape nano-particle employed in localized surface plasmon resonance (LSPR) devices. Numerical modeling demonstrates advantages offered by the proposed nano-sinusoid on LSPR enhancement against other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nano-sinusoid shape has recently been proposed, which offers the advantage of more resonance wavelength tunability than that offered by other sharp-tip nano-particles. In this paper, a one-dimensional (1D) chain of the nano-sinusoids is modelled, and results are compared with those describing chains of nano-triangles and nano-diamonds. It is demonstrated that the chain of nano-sinusoids provides more enhancement at hot spots than other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of two-dimensional (2D) arrays of NPs demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ∼7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ~7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.