978 resultados para Liver-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of Hoxb4 in bone marrow cells promotes expansion of hematopoietic stem cell (HSC) populations in vivo and in vitro, indicating that this homeoprotein can activate the genetic program that determines self-renewal. However, this function cannot be solely attributed to Hoxb4 because Hoxb4(-/-) mice are viable and have an apparently normal HSC number. Quantitative polymerase chain reaction analysis showed that Hoxb4(-/-) c-Kit(+) fetal liver cells expressed moderately higher levels of several Hoxb cluster genes than control cells, raising the possibility that normal HSC activity in Hoxb4(-/-) mice is due to a compensatory up-regulation of other Hoxb genes. In this study, we investigated the competitive repopulation potential of HSCs lacking Hoxb4 alone, or in conjunction with 8 other Hoxb genes. Our results show that Hoxb4(-/-) and Hoxb1-b9(-/-) fetal liver cells retain full competitive repopulation potential and the ability to regenerate all myeloid and lymphoid lineages. Quantitative Hox gene expression profiling in purified c-KIt(+) Hoxb1-bg(-/-) fetal liver cells revealed an interaction between the Hoxa, b, and c clusters with variation in expression levels of Hoxa4, -a11, and -c4. Together, these studies show a complex network of genetic interactions between several Hox genes in primitive hematopoietic cells and demonstrate that HSCs lacking up to 30% of the active Hox genes remain fully competent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigallocatechin-3-gallate (EGCG) is a constituent of green tea and has been associated with anticancer activity. In the present study, the inhibitory effect of EGCG on human hepatocellular cancer cells was examined by cell viability assay, in vitro apoptosis assay and cell cycle analysis. In addition, gene expression was measured to elucidate the molecular mechanisms of action of EGCG by mitochondrial membrane potential (MMP) determination and western blot analysis. We demonstrated that EGCG induced apoptosis, decreased mitochondrial membrane potential and promoted G0/G1 phase cell cycle arrest of HCCLM6 cells but not that of non-cancerous liver cells (HL-7702). The EGCG-induced apoptosis of HCCLM6 cells was associated with a significant decrease in Bcl-2 and NF-κB expression. In addition, the expression of Bax, p53, caspase-9 and caspase-3 increased, and cytochrome c was released. These results suggest that EGCG inhibits the progression of cancer through cytocidal activity and that it is a potential therapeutic compound for hepatocellular carcinoma (HCC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and humoral immune responses invoked by infected hepatocytes cells that contain long-lived, partially developed parasites. Here we analyzed sporozoites of Plasmodium berghei that are deficient in P36p (p36p(-)), a member of the P48/45 family of surface proteins. P36p plays no role in the ability of sporozoites to infect and traverse hepatocytes, but p36p(-) sporozoites abort during development within the hepatocyte. Immunization with p36p(-) sporozoites results in a protective immunity against subsequent challenge with infectious wild-type sporozoites, another example of a specifically genetically attenuated sporozoite (GAS) conferring protective immunity. Comparison of biological characteristics of p36p(-) sporozoites with radiation-attenuated sporozoites demonstrates that liver cells infected with p36p(-) sporozoites disappear rapidly as a result of apoptosis of host cells that may potentiate the immune response. Such knowledge of the biological characteristics of GAS and their evoked immune responses are essential for further investigation of the utility of an optimized GAS-based malaria vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, depressed respiration was not correlated with the same reduction in energy allocated to protein biosynthesis or Na+/K+-ATPase. Hepatic energy expenditure for protein synthesis and Na+/K+- ATPase was even elevated at acidic compared to control pHe suggesting increased costs for ion regulation and cel- lular reorganization. Hypercapnia at control pHe strongly reduced oxygen demand of branchial Na+/K+-ATPase with a similar trend for H+-ATPase. We conclude that extracellular acidosis triggers metabolic depression in gill and metabolically stimulated liver cells. Additionally, hypercapnia itself seems to limit capacities for metabolic usage of amino acids in liver cells while it decreases the use and costs of ion regulatory ATPases in gill cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)