999 resultados para Liver


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone for the Ya subunit of glutathione transferase from rat liver was constructed in E.coli. The clone hybridized to Ya and Yc subunit messenger RNAs. On the basis of experiments involving cell-free translation and hybridization to the cloned probe, it was shown that prototype inducers of cytochrome P-450 such as phenobarbitone and 3-methylcholanthrene as well as inhibitors such as CoCl2 and 3-amino-l,2,4-triazole enhanced the glutathione transferase (Ya+Yc) messenger RNA contents in rat liver. A comparative study with the induction of cytochrome P-450 (b+e) by phenobarbitone revealed that the drug manifested a striking increase in the nuclear pre-messenger RNAs for the cytochrome at 12 hr, but did not significantly affect the same in the case of glutathione transferase (Ya+Yc). 3-Amino-l, 2,4-tnazole and CoCl- blocked the phenobarbitone mediated increase in cytochrome P-450 (b+e) nuclear pre-messenger RNAs. These compounds did not significantly affect the glutathione transferase (Ya+Yc) nuclear pre-messenger RNA levels. The polysomal, poly (A)- containing messenger RNAs for cytochrome P-450 (b+e) increased by 12–15 fold after phenobarbitone administration, reached a maximum around 16hr and then decreased sharply. In comparison, the increase in the case of glutathione transferase (Ya+Yc) mesenger RNAs was sluggish and steady and a value of 3–4 fold was reached around 24 hr. Run-off transcription rates for cytochrome P-450 (b+e) increased by nearly 15 fold in 4 hr after phenobarbitone administration, whereas the increase for glutathione transferase (Ya+Yc) was only 2.0 fold. At 12 hr after the drug administration, the glutathione transferase (Ya+Yc) transcription rates were near normal. Administration of 3-amino-l,2,4-triazole and CoCl2 blocked the phenobarbitone-mediated increase in the transcription of cytochrome P-450 (b+e) messenger RNAs. These compounds at best had only marginal effects on the transcription of glutathione transferase (Ya+Yc) messenger RNAs. The half-life of cytochrome P-450 (b+e) messenger RNA was estimated to be 3–4 hr, whereas that for glutathione transferase (Ya+Yc) was found to be 8-9 hr. Administration of phenobarbitone enhanced the half-life of glutathione transferase (Ya+Yc) messenger RNA by nearly two fold. It is suggested that while transcription activation may play a primary role in the induction of cytochrome P-450 (b+e), the induction of glutathione transferase (Ya+Yc) may essentially involve stabilization of the messenger RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen (E) induction of riboflavin carrier protein (RCP) in the chicken oviduct and liver was investigated to compare and contrast the kinetics, hormonal specificity and modulation of its elaboration in the 2 steroid-responsive tissues. During primary stimulation, continued daily E administration to immature female chicks elicited, after an initial lag, rapid growth and RCP content of the oviduct; neither progesterone (P) nor testosterone (T) could substitute for E in this respect. Furthermore, P given along with E curtailed tissue growth and its RCP content, whereas E + T had a synergistic effect on tissue growth only. During secondary stimulation, E administration steeply enhanced both tissue weight and RCP content without any lag. Interestingly, P (but not T) could substitute for E in augmenting magnum RCP concentration to a comparable extent while a concomitant effect on tissue growth was less marked. In contrast, hepatic induction of RCP was absolutely E-specific during both primary and secondary stimulations. Secondary stimulation with either E or P of E-primed birds enhanced the rates of RCP synthesis in the oviduct relative to that of total protein, whereas in the liver only E was effective in this regard. The absolute rate of E-induced RCP synthesis in both the steroid-stimulated tissues was significantly higher than that of general protein elaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of the anti-hypercholesterolaemic drug clofibrate to the rat increases the activity of carnitine acetyltransferase (acetyl-CoA-carnitine -acetyltransferase, EC 2.3.1.7) in liver and kidney. The drug-mediated increase in enzyme activity in hepatic mitochondria shows a time lag during which the activity increases in the microsomal and peroxisomal fractions. The enzyme induced in the particulate fractions is identical with one normally present in mitochondria. The increase in enzyme activity is prevented by inhibitors of RNA and general protein synthesis. Mitochondrial protein-synthetic machinery does not appear to be involved in the process. Immunoprecipitation shows increased concentration of the enzyme protein in hepatic mitochondria isolated from drug-treated animals. In these animals, the rate of synthesis of the enzyme is increased 7-fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Metabolites isolated from the urine of rats after oral administration of geraniol (I) were: geranic acid (II), 3-hydroxy-citronellic acid (III), 8-hydroxy-geraniol (IV), 8-carboxy-geraniol (V) and Hildebrandt acid (VI). 2. Metabolites isolated from urine of rats after oral administration of linalool (VII) were 8-hydroxy-linalool (VIII) and 8-carboxy-linalool (IX). 3. After three days of feeding rats with either geraniol or linalool, liver-microsomal cytochrome P-450 was increased. Both NADH- and NADPH-cytochrome c reductase activities were not significantly changed during the six days of treatment. 4. Oral administration of these two terpenoids did not affect any of the lung-microsomal parameters measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of mitochondria increased the incorporation of [2-14C]mevalonate into sterols in a cell-free system from rat liver. Various phenyl and phenolic compounds inhibited the incorporation of mevalonate when added in vitro. p-Hydroxycinnamate, a metabolite of tyrosine, was the most powerful inhibitor among the compounds tested. Catechol, resorcinol and quinol were inhibitory at high concentrations. Organic acids lacking an aromatic ring were not inhibitory. Two hypocholesterolaemic drugs, Clofibrate (α-p-chlorophenoxyisobutyrate) and Clofenapate [α,4-(p-chlorophenyl)phenoxyisobutyrate], which are known to affect some step before the formation of mevalonate in the biosynthesis of cholesterol in vivo, showed inhibition at a step beyond the formation of mevalonate in vitro. The presence of the aromatic ring and the carboxyl group in a molecule appears to be necessary for the inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of cytochrome P-450 (phenobarbital inducible) and cytochrome P-448 (3-methylcholanthrene inducible) have been studied in rat liver in vivo and in the wheat germ cell-free system using anti- cytochrome P-450 and anti-cytochrome P-448 antibodies. The major mature forms synthesized in vivo correspond to a molecular weight of 47,000 for cytochrome P-450 and 53,000 for cytochrome P-448. Translation of poly(A)-containing RNA from phenobarbital-treated rats in the wheat germ cell-free system reveals that the cell-free product immunoprecipitated with anti-cytochrome P-450 antibody has a molecular weight close to 47,000. In the case of 3-methylcholanthrene, the cell- free product immunoprecipitated with anti-cytochrome P-448 antibody shows a molecular weight around 59,000. Significant conversion of the 59,000 species to the 53,000 species can be demonstrated when the translation is carried out in the presence of microsomal membranes isolated from rat liver. Phenobarbital and 3-methylcholanthrene enhance the translatable messenger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accepted Article Abstract Background: Liver diseases in Australia are estimated to affect 6 million people with a societal cost of $51 billion annually. Information about utilization of specialist hepatology care is critical in informing policy makers about the requirements for delivery of hepatology-related health care. Aims: This study examined etiology and severity of liver disease seen in a tertiary hospital hepatology clinic, as well as resource utilisation patterns. Methods: A longitudinal cohort study included consecutive patients booked in hepatology outpatient clinics during a 3 month period. Subsequent outpatient appointments for these patients over the following 12 months were then recorded. Results: During the initial 3 month period 1471 appointments were scheduled with a hepatologist, 1136 of which were attended. 21% of patients were “new cases”. Hepatitis B (HBV) was the most common disease etiology for new cases (37%). Advanced disease at presentation varied between etiology, with HBV (5%), Hepatitis C (HCV) (31%), non-alcoholic fatty liver disease (NAFLD) (46%) and alcoholic liver disease (ALD) (72%). Most patients (83%) attended multiple hepatology appointments, and a range of referrals patterns for procedures, investigations and other specialty assessments were observed. Conclusions: There is a high prevalence of HBV in new case referrals. Patients with HCV, NAFLD and ALD have a high prevalence of advanced liver disease at referral, requiring ongoing surveillance for development of decompensated liver disease and liver cancer. These findings that describe patterns of health service utilisation among patients with liver disease provide useful information for planning sustainable health service provision for this clinical population

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The far-ultraviolet region circular dichroic spectrumof serine hydroxymethyltransferase from monkey liver showed that the protein is in an α-helical conformation. The near ultraviolet circular dichoric spectrum revealed two negative bands originating from the tertiary conformational environment of the aromatic amino acid residues. Addition of urea or guanidinium chloride perturbed the characteristic fluorescence and far ultraviolet circular dichroic spectrum of the enzyme. The decrease in (θ)222 and enzyme activity followed identical patterns with increasing concentrations of urea, whereas with guanidinium chloride, the loss of enzyme activity preceded the loss of secondary structure. 2-Chloroethanol, trifluoroethanol and sodium dodecyl sulphate enhanced the mean residue ellipticity values. In addition, sodium dodecyl sulphate also caused a perturbation of the fluorescence emission spectrum of the enzyme. Extremes of pH decreased the – (θ)222 value. Plots of –(θ)222and enzyme activity as a function of pH showed maximal values at pH 7.4-7.5. These results suggested the prevalence of "conformational flexibility" in the structure of serine hydroxymethyltransferase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The homogeneous serine hydroxymethyltransferase from monkey liver was optimally activate at 60°C and the Arrhenius plot for the enzyme was nonlinear with a break at 15°C. The monkey liver enzyme showed high thermal stability of 62°C, as monitored by circular dichroism at 222 nm, absorbance at 280 nm and enzyme activity. The enzyme exhibited a sharp co-operative thermal transition in the range of 50°-70° (Tm= 65°C), as monitored by circular dichroism. L-Serine protected the enzyme against both thermal inactivation and thermal disruption of the secondary structure. The homotropic interactions of tetrahydrofolate with the enzyme was abolished at high temperatures (at 70°C, the Hill coefficient value was 1.0). A plot of h values vs. assay temperature of tetrahydrofolate saturation experiments, showed the presence of an intermediate conformer with an h value of 1.7 in the temperature range of 45°-60°C. Inclusion of a heat denaturation step in the scheme employed for the purification of serine hydroxymethyltransferase resulted in the loss of cooperative interactions with tetrahydrofolate. The temperature effects on the serine hydroxylmethyltransferase, reported for the first time, lead to a better understanding of the heat induced alterations in conformation and activity for this oligomeric protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.