987 resultados para Lipid-core Peptide System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse terrestrial palynomorphs (spores and pollen) were recovered from glacigene Lower Miocene and Oligocene core samples from the Cape Roberts Project (CRP) drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Rarity of palynomorphs probably results from the spares periglacial vegetation in the surrounding landscape at the time of deposition, as well as dilution from rapid sediment accumulation. The Miocene and Late Oligocene vegetation is interpreted as including herb-moss tundra with low-growing woody plants (including Nothofagus and podocarp conifers) in more protected areas, similar to that encountered in the Miocene of CRP-1. Species richness and numbers of specimens increase downhole, a trend that begins very gradually below ~307 mbsf, and increases below ~443 mbsf through the Early Oligocene. These lower assemblages reflect low diversity woody vegetation dominated by several species of Nofhofagus and podocarps, growing in somewhat milder conditions, though still cold temperate to periglacial in the Early Oligocene. The CRP-2/2A core provides new biostratigraphical information, such as the First Appearance Datums (FADS) of Tricolpites sp. a near the Oligocene/Miocene boundary, and Marchantiaceae in the Early/Late Oligocene transition: these are taxa that along with N. lachlaniae, Coptospora spp. and Podocarpidites sp.b characterize assemblages recovered from outcrops of the Pliocene Sirius Group in the Transantarctic Mountains. Some elements of the extremely hardy periglacial tundra vegetation that survived in Antarctica into the Pliocene had their origin in the Oligocene during a time of deteriorating (colder, drier) climatic conditions. The CRP results highlight the long persistence of this tundra vegetation, through approximately 30 million years of dynamically changing climatic conditions. Rare Jurassic and more common Permian-Triassic spores and pollen occur sporadically throughout the core. These are derived from Jurassic Ferrar Group sediments, and from the Permian-Triassic Victoria Group, upper Beacon Supergroup. Higher frequencies of reworked Beacon palynomorphs and coaly organic matter below ~307 mbsf indicate greater erosion of the Beacon Supergroup for this lower part of the core. A color range from black, severely metamorphosed specimens, to light-colored, yellow (indicating low thermal alteration), reworked Permian palynomorphs, indicates local provenance in the dolerite-intruded Beacon strata of the Transantarctic Mountains, as well as areas (now sub-ice) of Beacon strata with little or no associated dolerite well inland (cratonwards) of the present Transantarctic Mountains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse to moderately abundant foraminiferal assemblages from Oligocene and Lower Miocene sediments in the CRP-2/2A drillhole contain C.27 genera and 42 species of calcareous benthic foraminifera. No planktic or agglutinated taxa were observed. On the basis of their faunal characteristics, four Foraminiferal Units are defined in drillhole succession: Foraminiferal Unit I (26.91-193.95 mbsf), mostly sparse assemblages with Elphidium magellanicum and Cribroelphidium sp.; Foraminiferal Unit II (193.95-342.42 mbsf), mostly moderately abundant assemblages with Cassidulinoides aequilatera and Eponides bradyi; Foraminiferal Unit III (342.42-486.19 mbsf), moderately abundant to sparse assemblages characterised by Cassidulinoides chapmani and Stainforthia sp.; and Foraminiferal Unit IV, Improverished (486.19-624.15, total depth, mbsf), with mostly barren residues, but with large Milioliidae recorded in situ at various horizons in the drill core. Foraminiferal Units I-IV lack taxa allowing correlation to standard zonal schemes. Inspection of faunal records from CIROS-1 and DSDP 270 indicates that, although the faunas show an overall similarity, CRP-2/2A Foraminiferal Units I-IV are not identifiable at these sites. The units are therefore most likely to reflect local environmental changes, and probably will prove useful for local correlation, but their lateral extent is undetermined. All four assemblages apparently represent various glacially-influenced shelf environments, and appear to reflect a long term deepening trend from Units IV to II, from perhaps inner to mid or outer-shelf depths, followed by a return to shallower, inner shelf, conditios for Unit I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment deformation features in CRP-2/2A were described during normal logging procedures and from core-scan images. In this paper the origin of soft-sediment folding, contorted bedding, microfaulting, clastic dykes, shear zones and intraformational breccias is discussed. The features have a stratigraphic distribution related to major unconformities and sequence boundaries. Hypotheses for the origins of sediment deformation include hydrofracturing, subglacial shearing, slumping, and gas hydrate formation. Shear zones, microfaults, clastic dykes and contorted bedding within rapidly deposited sediments, suggest that slumping in an ice-distal environment occurred in the early Oligocene. A till wedge beneath a diamictite at 364 mbsf the mid-Oligocene section represents the oldest evidence of grounded ice in CRP-2/2A. Shear zones with a subglacial origin in the early late Oligocene and early Miocene sections of the core are evidence of further grounding events. The interpretation of sediment deformation in CRP-2/2A is compared to other Antarctic stratigraphic records and global eustatic change between the late Eocenel/early Oligocene and the middle Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium isotope stratigraphy was used to date 5 discrete horizons within the CRP-3 drillhole. A single in situ modiolid bivalve fragment at 10.88 mbsf gives an age of 30.9 (±0.8) Ma for the associated sediment. The four remaining well preserved fragments recovered from 29.94-190.31 mbsf are within error of this age, indicating a high sedimentation rate and suggesting little time is missing in disconformities. The diagenetic alteration of carbonate macrofossils by continental fluids (and possibly seawater) is a common feature to 320 mbsf.

Relevância:

100.00% 100.00%

Publicador: