990 resultados para Lactate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the critical speed (CS) for track cycling and to assess whether a lactate steady state occurs at this speed. Fourteen competitive cyclists performed the following tests on an official cycling track (333.3 m): 1) incremental test for determination of the intensity corresponding to 4 mM of blood lactate (onset of blood lactate accumulation, OBLA) and maximal oxygen uptake (VO(2)max); 2) CS: 3 maximal bouts for distances of 2, 4 and 6 km executed in random order and with a period of recovery of 40 to 50 min between bouts. CS was determined for each subject from the linear regression between the distance and the time taking to cycle it; 3) Endurance test in which subjects were instructed to pedal at 100% of their individually determined CS for 30 min. At the 10(th) and 30(th) min (or upon exhaustion), 25 mul of blood were collected from ear lobe for later analysis of blood lactate [Lac]b. An increase less than or equal to1 mM between 10 and 30 min of exercise was considered as the criterion for the occurrence of the lactate steady state. CS (49.6 +/- 8.6 ml.kg(-1).min(-1); 36.9 +/- 2.7 km.h(-1)) was significantly higher than OBLA (43.7 8.0 ml.kg(-1).min(-1); 35.24 +/- 2.6 km.h(-1)) although the two parameters were highly correlated (r=0.97). During the endurance test, only 8 of the 14 subjects completed the 30 min period at CS. of these 8 subjects, only 2 presented a lactate steady state. Time to exhaustion at CS was 20.3 +/- 1.6 min for the remaining 6 subjects. The 12 subjects who did not reach a lactate steady state presented mean [Lac]b values of 7.4 +/- 1.3 mM at 10 min and of 9.4 +/- 1.9 mM at the end of the test (exhaustion), characterizing an exercise intensity of high lactacidemia. on the basis of the present results, we can conclude that CS determined by a track cycling test seems to overestimate the intensity of the maximal lactate steady state for most subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of exercise mode on the blood lactate removal during recovery of high-intensity exercise. Nine male individuals performed the following tests in order to determine the blood lactate removal: Running - 2x200 m, the subjects ran at their maximum capacity, and rested 2 min between each bout. Swimming - 2x50 m, the subjects swam at their maximum capacity, and rested 2 min between each bout. Each test was realized on different days with three recovery modes: passive (sitting down), swimming, or running. Recovery exercise intensity was corresponding to the aerobic threshold. All recovery activities lasted 30 min. The two forms of active recovery were initiated 2 min after the end of high-intensity exercise and lasted 15 min, and were followed by 13 min of seated rest. After 1,7, 12,17, and 30 min of the end of high-intensity exercise, blood samples (25 mu l) were collected in order to determine the blood lactate concentration. By linear regression, between the logarithm of lactate concentration and its respective time of recovery, the half-time of blood lactate removal (t1/2) was determined. Time of high-intensity exercise and the lactate concentration obtained in the 1(st) min of recovery were not different between running and swimming. Passive recovery (PR) following running (R-PR=25.5+/-4.3 min) showed a t1/2 significantly higher than PR after swimming (S-PR=18.6+/-4.3 min). The t1/2 of the sequences running-running (R-R=13.0 min), running-swimming (R-S=12.9+/-3.8 min), swimming-swimming (S-S=13.2+/-2.8 min), and swimming-running (S-R=12.9+/-3.8 min) were significantly lower than the t1/2 of the R-PR and S-PR. There was no difference between the t1/2 of the sequences R-R R-S, and S-S. on the other hand the sequence S-R showed a t1/2 significantly lower than the sequences S-S and R-R. It was concluded that the two forms of active recovery determine an increase in the blood lactate removal, regardless of the mode of high-intensity exercise performed previously. Active recovery performed by the muscle groups that were not previously fatigued, can improve the blood lactate removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. The objective of this study was to verify the effects of active (AR) and passive recovery (PR) after a judo match on blood lactate removal and on performance in an anaerobic intermittent task (4 bouts of upper body Wingate tests with 3-min interval between bouts; 4WT).Methods. The sample was constituted by 17 male judo players of different competitive levels: A) National (Brazil) and International medallists (n. 5). B) State (São Paulo) medallists (n. 7). Q City (São Paulo) medallists (n. 5). The subjects were submitted to: 1) a treadmill test for determination of VO2peak and velocity at anaerobic threshold (VAT); 2) body composition; 3) a 5-min judo combat, 15-min of AR or PR followed by 4WT.Results. The groups did not differ with respect to: body weight, VO2peak, VAT, body fat percentage, blood lactate after combats. No difference was observed in performance between AR and PR, despite a lower blood lactate after combat (10 and 15 min) during AR compared to PR. Groups A and B performed better in the high-intensity intermittent exercise compared to athletes with lower competitive level (C).Conclusion. The ability to maintain power output during intermittent anaerobic exercises can discriminate properly judo players of different levels. Lactate removal was improved with AR when compared to PR but AR did not improve performance in a subsequent intermittent anaerobic exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. The aim of the present study was to investigate the validity of the Lactate Minimum Test (LMT) for the determination of peak VO2 on a cycle ergometer and to determine the submaximal oxygen uptake (VO2) and pulmonary ventilation (VE) responses in an incremental exercise test when it is preceded by high intensity exercise (i.e., during a LMT).Methods. Ten trained male athletes (triathletes and cyclists) performed 2 exercise tests in random order on an electromagnetic cycle ergometer: 1) Control Test (CT): an incremental test with an initial work rate of 100 W, and with 25 W increments at 3-min intervals, until voluntary exhaustion; 2) LMT: an incremental test identical to the CT, except that it was preceded by 2 supramaximal bouts of 30-sec (similar to120% VO(2)peak) with a 30-sec rest to induce lactic acidosis. This test started 8 min after the induction of acidosis.Results. There was no significant difference in peak VO2 (65.6+/-7.4 ml.kg(-1).min(-1); 63.8+/-7.5 ml.kg(-1).min(-1) to CT and LMT, respectively). However, the maximal power output (POmax) reached was significantly higher in CT (300.6+/-15.7 W) than in the LMT (283.2+/-16.0 W).VO2 and VE were significantly increased at initial power outputs in LMT.Conclusion. Although the LMT alters the submaximal physiological responses during the incremental phase (greater initial metabolic cost), this protocol is valid to evaluate peak VO2, although the POmax reached is also reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate is a compound produced by the anaerobic metabolism of glucose, and hyperlactataemia occurs when the rate of production of lactate exceeds the rate of elimination. This occurs in situations of hypoxia and tissue hypoperfusion. Lactate has been considered a useful prognostic indicator in critically ill patients. Pyometra is a disease of adult female dogs characterized by inflammation of the uterus with an accumulation of exudate, which occurs during the luteal phase. It is one of the most common diseases that occur in the genital tract of female dogs. A total of 31 dogs were diagnosed with pyometra. The diagnosis was confirmed at ultrasonography. of the 31 dogs, 25 females had open cervix pyometra and six had closed cervix pyometra. Plasma lactate concentrations were determined by an enzymatic colorimetric method. The average concentration (+/- SD) of plasma lactate in all 31 bitches with pyometra was 3.55 +/- 0.46 mm. Healthy dogs had plasma lactate concentrations between 0.3 and 2.5 mm (mean +/- SD). Concentrations ranged from 0.8 to 2.9 mm when plasma lactate was measured with a portable device and 0.42.6 mm with the blood gas analyser. Even though plasma lactate values vary between several studies and equipment used to measure concentrations, our results for dogs with pyometra are higher indicating hyperlactataemia (Thorneloe et al. , Can Vet J 48, 283288). Plasma lactate in dogs with closed cervix pyometra was mean +/- SD and in dogs with open cervix pyometra, it was mean +/- SD. The plasma lactate concentration in dogs with pyometra was higher than in healthy bitches, and there was no influence of patency of the cervix on the concentration of plasma lactate concentrations. Plasma lactate concentrations were similar for animals with open and closed pyometra (3.54 +/- 0.52 to 3.64 +/- 1.03 mm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzed the influence of recovery phase manipulation after hyperlactemia induction on the lactate minimum intensity during treadmill running. Twelve male runners (24.6 +/- A 6.3 years; 172 +/- A 8.0 cm and 62.6 +/- A 6.1 kg) performed three lactate minimum tests involving passive (LMT(P)) and active recoveries at 30%vVO(2max) (LMT(A30)) and 50%vVO(2max) (LMT(A50)) in the 8-min period following initial sprints. During subsequent graded exercise, lactate minimum speed and VO(2) in LMT(A50) (12.8 +/- A 1.5 km h(-1) and 40.3 +/- A 5.1 ml kg(-1) min(-1)) were significantly lower (P < 0.05) than those in LMT(A30) (13.3 +/- A 1.6 km h(-1) and 42.9 +/- A 5.3 ml kg(-1) min(-1)) and LMT(P) (13.8 +/- A 1.6 km h(-1) and 43.6 +/- A 6.1 ml kg(-1) min(-1)). In addition, lactate minimum speed in LMT(A30) was significantly lower (P < 0.05) than that in LMT(P). These results suggest that lactate minimum intensity is lowered by active recovery after hyperlactemia induction in an intensity-dependent manner compared to passive recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)