20 resultados para LL37


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: As a result of chronic inflammation during periodontal disease the junctional epithelium becomes micro-ulcerated. The inflammatory process is mediated by both bacterial and host cell products. Host defence peptides such as defensins, secretory leucocyte protease inhibitor (SLPI) and the sole human cathelicidin, LL-37, are secreted by both periodontal cells and neutrophils into gingival crevicular fluid (GCF). They have the ability to modulate the immune response in periodontitis and are thought to have a potential role in periodontal wound healing. Objectives: The aims of this study were to determine the role of LL-37 in the production of Interleukin (IL)-8, IL-6, hepatocyte growth factor (HGF) and basic-fibroblast growth factor (bFGF) by gingival fibroblasts. The role of LL-37 in modulating total matrix metalloproteinase (MMP) activity and expression of tissue inhibitors of metalloproteinase (TIMP)-1 and -2 by gingival fibroblasts was also investigated. Methods: Primary gingival fibroblasts were co-cultured with concentrations of LL-37 (1, 5 and 10µg/ml) for 24 hours and their supernatants tested for levels of IL-8 and IL-6, HGF, bFGF, TIMP-1 and TIMP-2 by ELISA. Rates of MMP turnover in the supernatants were tested by fluorogenic assay using fluorescence resonance energy transfer (FRET) peptide substrates. Cytotoxicity was measured by MTT assay. Statistical significance was measured using the independent t-test and p<0.05 was considered significant. Results: LL-37 significantly upregulated levels of IL-8, IL-6, HGF, bFGF and TIMP-1 (p<0.05) in a dose-dependent fashion. LL-37 significantly decreased the total MMP activity (p<0.05). None of the LL-37 concentrations tested were cytotoxic to gingival fibroblasts. Conclusion: These results indicate that LL-37 is involved in periodontal wound healing. LL-37 increased levels of proinflammatory cytokines and increased levels of growth factors involved in re-epithelialisation. LL-37 has the ability to regulate remodelling of the periodontium by controlling MMP overactivity both directly and by stimulating production of inhibitors by gingival fibroblasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host defence peptides, including the cathelicidin LL-37, play an important role in mucosal immunity, functioning as both antimicrobial agents and modulators of the inflammatory response. In the current climate of antibiotic resistance, the idea of using naturally occurring antimicrobial peptides, or their synthetic mimetics, to combat oral infection is particularly appealing. Objectives: The aim of this study was to investigate the effects of parent LL-37, and two peptide mimetics (KR-12 and KE-18), on cytokine expression and response to bacterial challenge by gingival fibroblasts. Methods: KR-12 and KE-18 are peptide mimetics of the biologically active, mid-region sequence of LL-37. The effects of commercially available LL-37, KR-12 and KE-18 on gingival fibroblast response to E coli and P gingivalis LPS challenge, analysed by IL-6 and IL-8 expression, were determined in cell culture by ELISA. The direct effects of each peptide on IL-6, IL-8, CXCL-1 and HGF expression were also determined by ELISA. The MTT assay was used to evaluate peptide effects on fibroblast viability. Results: LL-37 and KE-18, but not KR-12, inhibited LPS induction of inflammatory cytokine expression and directly stimulated CXCL-1 production by fibroblasts. All 3 peptides stimulated production of IL-8 and HGF. Neither LL-37 nor KE-12 affected cell viability, while KE-18, at higher concentrations, induced cell death. Conclusions: Shorter, peptide mimetics of LL-37, in particular KE-18, retain the immunomodulatory effects of the parent molecule and possess excellent potential as therapeutic agents in the treatment of oral infections including periodontal disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Candida albicans is a commensal organism and a constituent of the normal oral flora. Cell concentrations of 1x102 cells/ml and below are indicative of commensal colonisation in the oral cavity, above this level C. albicans can become an opportunistic pathogen; it is the most prevalent human fungal pathogen and a causal agent of the oral infection, candidiasis. The capacity of C. albicans to cause infection arises from its ability to exist in a biofilm ecosystem. Mature C. albicans biofilms display a high level of resistance to antifungals and the need for other therapeutic options has become paramount. Objectives: The objectives of the current study were to determine the antifungal activity of LL-37 (a member of the human cathelicidin family) and two truncated peptide mimetics against C. albicans in both planktonic and biofilm form. Methods: Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of LL-37 and the truncated mimetics KE-18 and KR-12 against planktonic C. albicans. A 96 well microtitre plate assay was employed to study the effects of the peptides on early candida biofilm formation (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm quantification was achieved using the crystal violet assay. Results: MIC values obtained: LL-37 >250µg/ml; KE-18 51µg/ml; and KR-12 11µg/ml. LL-37 significantly reduced the quantity of biofilm formed by C.albicans at both the 4 h and 24 h timepoints (p <0.0001). KE-18 showed significant biofilm reduction over 4 h and 24 h (p=0.0002, p=0.013 respectively), KR-12 showed significant reduction at the 24 h time point only (p=0.0256). Conclusions: Results suggest that LL-37 has the ability to disrupt early biofilm formation of C. albicans with its potency of action similar with that of fluconazole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: LL-37, composed of 37 amino acid residues, is an innate host defence peptide of the cathelicidin family. It is expressed by neutrophils, monocytes and epithelial cells and exhibits both anti-bacterial and immunomodulatory properties. LL-37 is however prone to proteolytic degradation by proteinases, thus potentially limiting its inherent host defence properties in the inflammatory milieu. Objectives: The present study was designed to determine whether LL-37 was degraded by components of gingival crevicular fluid (GCF) from healthy subjects or those with periodontitis. In addition, we aimed to deduce whether degradation of the peptide was accelerated in GCF samples which were determined to be positive for the periodontopathic bacterium Porphyromonas gingivalis. Methods: GCF and bacterial plaque samples, pre- and post non-surgical periodontal treatment, were collected from 4 individual sites in patients presenting with advanced periodontitis. In healthy subjects, GCF samples only were collected. Plaque samples were analysed by QPCR for the presence or absence of P. gingivalis. Pooled GCF samples from healthy sites; periodontitis sites which were P. gingivalis negative (Pg-); or periodontitis sites which were P. gingivalis positive (Pg+), were incubated with synthetic LL-37 for 0 – 180 min. The degradation products were then analysed by matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS). Results: LL-37 was not degraded when incubated with GCF from healthy subjects. In contrast, LL-37 was degraded after 30 min when incubated with Pg- GCF. However degradation of LL-37 was apparent after only 2 min incubation with Pg+ GCF and the parent molecule was almost completely degraded after 30 min. Conclusions: The rapid degradation of LL-37, particularly in Pg+ sites, highlights the limited role which this host defence peptide may play in the presence of biologically active proteinases. It also underscores a potent virulence mechanism of P. gingivalis used to circumvent innate host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.