663 resultados para LIGNIN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a study of the vanadyl (VO2þ)-humic acids system, the residual vanadyl ion suppressed fluorescence and specific electron paramagnetic resonance (EPR) and NMR signals. In the case of NMR, the proton rotating frame relaxation times (T1qH) indicate that this suppression is due to an inefficient H-C cross polarization, which is a consequence of a shortening of T1qH. Principal components analysis (PCA) facilitated the isolation of the effect of the VO2þ ion and indicated that the organic free radical signal was due to at least two paramagnetic centres and that the VO2þ ion preferentially suppressed the species whose electronic density is delocalized over O atoms (greater g-factor). additionally, the newly obtained variables (principal components ? PC) indicated that, as the result of the more intense tillage a relative increase occurred in the accumulation of: (i) recalcitrant structures; (ii) lignin and long-chain alkyl structures; and (iii) organic free radicals with smaller g-factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, aswell the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH4) emissions fromNellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH4 emissions were determined using the sulphur hexafluoride (SF6) tracer gas technique measured by gas chromatography and fluxes of CH4 calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH4 emissions were between 102.49 and 220.91 g d-1 (37.4 to 80.6 kg ani-1 yr-1); 16.89 and 30.20 g kg-1 DMI; 1.35 and 2.90 Mcal ani-1 d-1; 0.18 and 0.57 g kg-1 ADG-1 and 5.05 and 8.76% of GE. Emissions in terms of CO2 equivalents were between 4.68 and 14.22 g CO2-eq-1 g-1 ADG. Variations in CH4 emissions were related to seasonal effect on the forage quality and variations in dry matter intake.