975 resultados para LATTICE-CONSTANTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of (Ga, Mn)As epilayers have been prepared on semi-insulating GaAs (001) substrates at 230 degrees C by molecular-beam epitaxy under fixed temperatures of Ga and Mn cells and varied temperatures of the As cell. By systematically studying the lattice constants, magnetic and magneto-transport properties in a self-consistent manner, we find that the concentration of As antisites monotonically increases with increasing As flux, while the concentration of interstitial Mn defects decreases with it. Such a trend sensitively affects the properties of (Ga, Mn)As epilayers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd/C catalysts with designed lattice constants were synthesized for the electro-oxidation of formic acid. By changing the solvents in the preparation procedure, it was demonstrated that the different lattice constants of Pd crystallites could be controlled as desired. The varied lattice constants may be attributed to the difference in the interactions between solvents and PdCl2. it was found that the lattice constant had an obvious effect on the electro-catalytic performance of Pd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PbMg1/3Nb2/3O3 (PMN) powder was prepared by citrate organic solution, and barium titanate (BT) seed particles were added to encourage the perovskite phase formation. Sintering was followed using the constant heating rate mode of a dilatometer, and it was observed that the seed concentration affected the PMN shrinkage rate and crystal structure. The study of the lattice parameters of the samples after the sintering process indicates that the diffusion of the titanium and of the barium inside perovskite and pyrochlore PMN phases occurs. Moreover, this substitution provoked a decrease of the lattice parameters as showed by the Rietveld refinement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The highly unusual structural and electronic properties of the α-phase of (Si1-xCx)3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si 1-xCx)3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si 1-xCx)3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1-xCx)3N 4 is found to be closer to that of α-Si3N 4 than of α-C3N4. Plasma-assisted synthesis experiments of CNx and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C-N and Si-N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural stability, electronic, and optical properties of InN under high pressure are studied using the first-principles calculations. The lattice constants and electronic band structure are found consistent with the available experimental and theoretical values. The pressure of the wurtzite-to-rocksalt structural transition is 13.4 GPa, which is in an excellent agreement with the most recent experimental values. The optical characteristics reproduce the experimental data thus justifying the feasibility of our theoretical predictions of the optical properties of InN at high pressures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transformation of vaterite to calcite was investigated systematically. The transition temperature and the energetics of the transformation were determined from differential thermal curves. The variations of lattice constants and crystallite size, accompanying the transformation were studied by X-ray diffractometry. The kinetics of transformation were investigated in the temperature range 460–490°C. The kinetic data were analysed with the help of three separate solid-state models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here the results of structural and vibrational studies on the solid solution Fe1 ? xNixPS3 (1 greater-or-equal, slanted x greater-or-equal, slanted 0) systems. From the structural analysis, we show that there is a lattice compaction as the composition x is varied from 0 to 1, the basic lattice symmetry being maintained. We find that the compaction is more in the basal plane. These subtle structural changes are also reflected in the vibrational bands. We observed splitting of certain bands due to these small changes in the lattice constants, which we explained as arising from a correlation splitting. These changes in the vibrational bands have also been seen on cooling where there is a preferential thermal compaction in the basal plane compared to that perpendicular to the plane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide films have been deposited using DC magnetron sputtering technique onto well-cleaned p-silicon substrates at an oxygen partial pressure of 7 x 10(-5) mbar and at a sputtering pressure (Ar + O-2) Of I X 10(-3) mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger electron spectroscopy reveals the stoichiometry with an 0 and Ti ratio 2.08. The influence of post-deposition annealing at 673 and 773 K on the structural properties of the titanium dioxide thin films have been studied using XRD and Raman scattering. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at temperature 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature. The Raman scattering study was performed on the as-deposited and annealed samples and the existence of Raman active modes A(1g), B-1g and E-g corresponding to the Raman shifts are studied and reported. The improvement of crystallinity of the TiO2 films was also studied using Raman scattering studies. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) angstrom, c = 5.2076(2) angstrom, unit cell volume (V) = 47.66(5) (angstrom)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at similar to 375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 degrees C to 450 degrees C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 degrees C to 400 degrees C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rectangular structural unit cell of a-Al2O3 is generated from its hexagonal one. For the rectangular structural crystal with a simple interatomic potential [Matsui, Mineral Mag. 58A, 571 (1994)], the relations of lattice constants to homogeneous pressure and temperature are calculated by using Monte-Carlo method at temperature 298K and 0 GPa, respectively. Both numerical results agree with experimental ones fairly well. By comparing pair distribution function, the crystal structure of a-Al2O3 has no phase transition in the range of systematic parameters. Based on the potential model, pressure dependence of isothermal bulk moduli is predicted. Under variation of general strains, which include of external and internal strains, elastic constants of a-Al2O3 in the different homogeneous load are determined. Along with increase of pressure, axial elastic constants increase appreciably, but nonaxial elastic constants are slowly changed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

利用带电单分散聚苯乙烯胶体粒子,通过自组装机理,制备了体积百分比为4·8%的具有多晶结构的胶体晶体,并用Kossel衍射技术和紫外可见分光光度计分别对晶体的生长过程进行了监测.通过对Kossel的图像分析检测不同阶段相应的晶格结构,发现胶体结晶过程晶体结构演变顺序为由液态—随机层结构—堆无序结构—面心立方孪晶结构到面心立方结构.定量地确定了结晶过程中晶体不同晶面的晶面间距和晶体的晶格常数,通过紫外可见分光光度计测量的晶体透射谱图,计算得到111晶面的晶面间距和晶体的晶格常数,与用Kossel衍射技术得到的结果相一致,还发现随样品放置时间的延长,衰减峰变窄和加深,并向短波方向移动,对应着晶体的晶格常数减小的现象.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that die gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.