995 resultados para Knee injury


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). Both in vitro and in vivo studies can aid in a better understanding of the etiology, progression, and advancement of this debilitating disorder. The knee menisci are fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, alignment and lubrication of the knee. Little is known about the biochemical and morphological changes associated with knee menisci following altered loading and traumatic impaction, and investigations are needed to further elucidate how degradation of this soft tissue advances over time. The biochemical response of porcine meniscal explants was investigated following a single bout of dynamic compression with and without the treatment of the pharmaceutical drug, anakinra (IL-1RA). Dynamic loading led to a strain-dependent response in both anabolic and catabolic gene expression of meniscal explants. By inhibiting the Interleukin-1 pathway with IL-1RA, a marked decrease in several catabolic molecules was found. From these studies, future developments in OA treatments may be developed. The implementation of an in vivo animal model contributes to the understanding of how the knee joint behaves as a whole. A novel closed-joint in vivo model that induces anterior cruciate ligament (ACL) rupture has been developed to better understand how traumatic injury leads to OA. The menisci of knees from three different groups (healthy, ACL transected, and traumatically impacted) were characterized using histomorphometry. The acute and chronic changes within the knee following traumatic impaction were investigated. The works presented in this dissertation have focused on the characterization, implementation, and development of mechanically-induced changes to the knee menisci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Traumatic knee dislocation represents a rare but devastating injury. Several controversies persist regarding type of treatment, surgical timing, graft selection, repair versus reconstruction of the medial and lateral structures, surgical techniques and postoperative rehabilitation. A new technique for primary ACL stabilization, dynamic intaligamentary stabilization (DIS) was developed at the authors' institution. The purpose of this study was to analyze the clinical and radiological outcomes of surgically treated traumatic knee dislocations by means of the DIS technique for the ACL, primary suturing for PCL, MCL and LCL. METHODS Between 2009 and 2012, 35 patients treated surgically for traumatic knee dislocation with primary anterior cruciate ligament (ACL) reconstruction with DIS, suturing of the posterior cruciate ligament (PCL) and primary complete repair of collaterals, were evaluated clinically (IKDC score, SF12 health survey, Lysholm score, Tegner score) and radiologically with a mean follow up of 2.2 years (range 1.00-3.50 years) years. Instrumented anterior-posterior translation was measured (KT-2000). RESULTS Anterior/posterior translation (KT-2000) for the healthy and injured limb was 4.8mm (range 3-8mm) and 7.3mm (range 5-10) (89N) respectively. Valgus and varus stress testing in 30° flexion was normal in 26 (75%) and 29 (83%) patients, respectively. The IKDC score was B in 29 (83%) and C in 6 (17%) patients, while the mean Tegner score was 6 (range 4-8). The mean Lysholm score was 90.83 (range 81-95) and mean SF-12 physical and mental scores were 54.1 (range 45-60) and 51.0 (range 39-62) respectively. In 2 patients, a secondary operation was performed. CONCLUSIONS Early, one stage reconstruction with DIS can achieve good functional results and patient satisfaction with overall restoration of sports and working capacity without graft requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Study Aim: Understanding injury incidence rates will be a great help with regards to preventing potential future damages. It is for this reason that this study suggests studying a large number of variables. The purpose of research is the relationship of events (empirical variables) that are usually taken into account in developing injury prevention programs during the battles and training in judo tournament. Material and methods: In this research project, 57 male judokas taking part in the Spanish National University Championship in 2009 were asked to complete a retrospective questionnaire. We analysed the following events: the most commonly injured body regions, the medical diagnosis, how and when the injury happened, the type of injury, the side of the body and the type of medical attention received. For the statistical analysis, we used the SPSS statistics programme to apply the Chi-square test in order to determine the significance levels for non-parametric tests from p<.05. Results: Significant differences were found in the most commonly injured body region, the shoulder/clavicle (p<.05), and in the most common diagnosis, the sprain (p<.05). Impact injuries (p<.05) are the most common and training (p<.05) is the most dangerous time. About the type of injury, 78.38% are new injuries (p<.05) and 69.05% affect the right hand side of the body (p<.05). Doctors are the most consulted specialists, but the physiotherapists obtained the best marks. Have been out due to injury for over 21 days 36.36% of the participants, but not for the entire season. Conclusions: The most common diagnosis in university student judokas coincides with those of elite judokas, with the sprain being the most common. University student judokas have a higher rate of shoulder/clavicle injuries, while professional judokas are prone to a higher rate of knee injuries. Training is the most common moment in which injuries occur, both in university student judokas and professional judokas. New injuries are the most common types of injuries in university student judokas and, while doctors are the most consulted specialists, the physiotherapists obtained the best marks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design. Experimental study of muscle changes after lumbar spinal injury. Objectives. To investigate effects of intervertebral disc and nerve root lesions on cross-sectional area, histology and chemistry of porcine lumbar multifidus. Summary of Background Data. The multifidus cross-sectional area is reduced in acute and chronic low back pain. Although chronic changes are widespread, acute changes at 1 segment are identified within days of injury. It is uncertain whether changes precede or follow injury, or what is the mechanism. Methods. The multifidus cross-sectional area was measured in 21 pigs from L1 to S1 with ultrasound before and 3 or 6 days after lesions: incision into L3 - L4 disc, medial branch transection of the L3 dorsal ramus, and a sham procedure. Samples from L3 to L5 were studied histologically and chemically. Results. The multifidus cross-sectional area was reduced at L4 ipsilateral to disc lesion but at L4 - L6 after nerve lesion. There was no change after sham or on the opposite side. Water and lactate were reduced bilaterally after disc lesion and ipsilateral to nerve lesion. Histology revealed enlargement of adipocytes and clustering of myofibers at multiple levels after disc and nerve lesions. Conclusions. These data resolve the controversy that the multifidus cross-sectional area reduces rapidly after lumbar injury. Changes after disc lesion affect 1 level with a different distribution to denervation. Such changes may be due to disuse following reflex inhibitory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medical collateral ligament injuries are among the most common knee injuries for the athletic population. Immobilization once was the accepted course of treatment for MCL injuries but research has demonstrated the ineffectiveness of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dancers of all forms often engage in aesthetic yet challenging movements. Their training, choreography, and performances require strength, stamina, flexibility, grace, passion, and emotion. Ballet and Bharatanatyam (an Indian classical dance form) dancers utilize two movements in each of their dance forms that are similar—a half-sitting pose and a full-sitting pose, both requiring external rotation of the legs and bending at the knee joints. The purpose of this study was to examine and compare the biomechanics of joint reaction forces and knee angles in both styles of dance for these particular poses. The study included nine female ballet dancers and seven female Bharatanatyam dancers. Hamstring and gastrocnemius flexibility were measured for each dancer. Knee angles, vertical peak forces, and moments were determined for dancers at the lowest point of their bending positions. Mann-Whitney U tests found significant differences in hamstring flexibility, right gastrocnemius flexibility, and knee angles for the full-sitting poses between ballet and Bharatanatyam dancers. No significant difference was found in the vertical peak forces as a ratio to total body weight and moments between the two styles of dance. Further research can be done to more directly assess a difference in injury risk between the ballet and Bharatanatyam dancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSI) are one of the most common injuries in a wide variety of running-sports, resulting in a considerable loss of competition and training time. One of the most problematic consequences regarding HSI is the recurrence rate and its non-decrease over the past decades, despite increasing evidence. Recent studies also found several maladaptations post-HSI probably due to neuromuscular inhibition and it has been proposed that these adaptations post-injury may contribute as risk factors for the injury-reinjury cycle and high recurrence rates. Furthermore it has been recently proposed not to disregard the inter-relationship between these adaptations and risk-factors post-injury in order to better understand the mechanisms of this complex injury. Objective: To determine, analyze and correlate neuromuscular adaptations in amateur football players with prior history of HSI per comparison to uninjured athletes in similar conditions. Methodology: Every participant was subjected to isokinetic concentric (60 and 240deg.sec) and eccentric (30 and 120deg.sec¯¹) testing, and peak torque, angle of peak torque and hamstrings to quadriceps (H:Q) conventional ratios were measured, myoelectrical activity of Bicep Femoris (BF) and Medial Hamstrings (MH) were also measured during isokinetic eccentric testing at both velocities and muscle activation percentages were calculated at 30, 50 and 100ms after onset of contraction. Furthermore active and passive knee extension, knee joint position sense (JPS) test, triple-hop distance (THD) test and core stability (flexors and extensors endurance, right and left side bridge test) were used and correlated. Results: Seventeen players have participated in this study: 10 athletes with prior history of HSI, composing the Hamstring injury group (HG) and 7 athletes without prior severe injuries as control group (CG). We found statistical significant differences between HG injured and uninjured sides in the BF myoelectrical activity at almost all times in both velocities and between HG injured and CG non-dominant sides at 100ms in eccentric 120deg.sec¯¹ velocity (p<.05). We found no differences in MH activity. Regarding proprioception we found differences between the HG injured and uninjured sides (p=.027). We found no differences in the rest of used tests. However, significant correlation between myoelectrical activation at 100ms in 120deg.sec¯¹ testing and JPS with initial position at 90º (r-.372; p=0.031) was found, as well as between isokinetic H:Q ratio at 240deg.sec and THD score (r=-.345; p=.045). Conclusion: We found significant differences that support previous research regarding neuromuscular adaptations and BF inhibition post-HSI. Moreover, to our knowledge, this was the first study that found correlation between these adaptations, and may open a door to new perspectives and future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Individuals with generalized joint hypermobility (GJH) are reported, in the clinical setting, to be at greater risk of developing musculoskeletal related joint pain, joint dislocations and tendinopathies. It is hypothesized that impaired static and dynamic neuromuscular movement control in those with GJH is responsible for contributing to an increased risk of injury and subsequent knee osteoarthritis (OA). Yet, to date, it remains unproven if there is an association between GJH and knee OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim has been to review the literature about the risk factors of hamstring injury in soccer from a biomechanical point of view. METHODOLOGY. Data bases of bibliography references were Medline, Scopus and SportDiscuss. RESULTS AND DISCUSSION. Many prospective studies have shown that the previous injury is the greatest risk factor of sustaining the injury. However the primary causes of the injury are unclear in soccer. A lack of hamstring flexibility has been one of the main injury risk factors with controversies on the results. Imbalance of isokinetic force is a risk factor but electrical coactivation of all muscles participating during knee flexion and extension are unknown in football. While the importance of lumbopelvic-hamstrings muscles synchronization during running seems to be crucial for understanding the risk of injury, no research has been developed in this topic in football. CONCLUSIONS. More research using new data recording procedures as Dynamic Scanners, Surface EMG, Inverse Dynamic Analysis are needed. The analysis of more specific movements as running, kicking or jumping is clearly required. Managers, coaches, physical trainers, physiotherapists, sport physicians and researchers should work together in order to improve the injury prevention and rehabilitation programs of football players. Key Words: sports biomechanics, soccer, hamstring injury, risk factors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Screening methods sensitive to movement strategies that increase anterior cruciate ligament (ACL) loads are likely to be effective in identifying athletes at-risk of ACL injury. Current ACL injury risk screening methods are yet to be evaluated for their ability to identify athletes' who exhibit high-risk lower limb mechanics during sport-specific maneuvers associated with ACL injury occurrences. The purpose of this study was to examine the efficacy of two ACL injury risk screening methods in identifying high-risk lower limb mechanics during a sport-specific landing task. Thirty-two female athletes were screened using the Landing Error Scoring System (LESS) and Tuck Jump Assessment. Participants' also completed a sport-specific landing task, during which three-dimensional kinematic and kinetic data were collected. One-dimensional statistical parametric mapping was used to examine the relationships between screening method scores, and the three-dimensional hip and knee joint rotation and moment data from the sport-specific landing. Higher LESS scores were associated with reduced knee flexion from 30 to 57 ms after initial contact (P = 0.003) during the sport-specific landing; however, no additional relationships were found. These findings suggest the LESS and Tuck Jump Assessment may have minimal applicability in identifying athletes' who exhibit high-risk landing postures in the sport-specific task examined.