10 resultados para Kloehn


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente estudo foi realizado com o propósito de avaliar respostas cefalométricas ao tratamento com aparelho extrabucal de Kloehn associado ao aparelho fixo edgewise convencional. Telerradiografias iniciais (T1) e finais (T2) de dois grupos de 30 pacientes tratados com estes aparelhos foram selecionadas e definidas pelo índice cefalométrico de Jarabak para determinação do padrão esquelético craniofacial. Os grupos foram denominados favorável (hipodivergente) e desfavorável (hiperdivergente). A idade média, no início do tratamento, foi de 11,03 anos e final de 14,72 com o tempo médio de tratamento de 3,6 anos para o grupo favorável. No grupo desfavorável a idade inicial foi de 11,51 anos e final de 15,17 anos com tempo médio de tratamento de 3,4 anos. Foi utilizado um sistema de análise de resposta de tratamento em coordenadas X e Y representativos dos movimentos dentários e das bases ósseas decompondo-os em seus vetores horizontais e verticais. Os resultados e respostas do tratamento foram analisados e comparados entre os grupos favorável e desfavorável utilizando o teste t-Student. Os resultados mostraram não haver diferenças estatisticamente significantes na resposta cefalométrica no tratamento com o aparelho extrabucal de Kloehn associados ao aparelho fixo edgewise quanto aos padrões faciais favorável e desfavorável. O tratamento promoveu uma restrição do deslocamento anterior maxilar e um menor deslocamento anterior mandibular. Quanto à movimentação dentária maxilar, houve uma restrição do movimento mesial e extrusivo dos molares superiores no grupo favorável, enquanto que o movimento dos dentes inferiores foi mínimo no sentido anterior e vertical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class II division 1 malocclusion occurs in 3.5 to 13 percent of 7 12 year-old children. It is the most common reason for orthodontic treatment in Finland. Correction is most commonly performed using headgear treatment. The aim of this study was to investigate the effects of cervical headgear treatment on dentition, facial skeletal and soft tissue growth, and upper airway structure, in children. 65 schoolchildren, 36 boys and 29 girls were studied. At the onset of treatment a mean age was 9.3 (range 6.6 12.4) years. All the children were consequently referred to an orthodontist because of Class II division 1 malocclusion. The included children had protrusive maxilla and an overjet of more than 2mm (3 to 11 mm). The children were treated with a Kloehn-type cervical headgear as the only appliance until Class I first molar relationships were achieved. The essential features of the headgear were cervical strong pulling forces, a long upward bent outer bow, and an expanded inner bow. Dental casts and lateral and posteroanterior cephalograms were taken before and after the treatment. The results were compared to a historical, cross-sectional Finnish cohort or to historical, age- and sex-matched normal Class I controls. The Class I first molar relationships were achieved in all the treated children. The mean treatment time was 1.7 (range 0.3-3.1) years. Phase 2 treatments were needed in 52% of the children, most often because of excess overjet or overbite. The treatment decreased maxillary protrusion by inhibiting alveolar forward growth, while the rest of the maxilla and mandible followed normal growth. The palate rotated anteriorly downward. The expansion of the inner bow of the headgear induced widening of the maxilla, nasal cavity, and the upper and lower dental arches. Class II malocclusion was associated with narrower oro- and hypopharyngeal space than in the Class I normal controls. The treatment increased the retropalatal airway space, while the rest of the airway remained unaffected. The facial profile improved esthetically, while the facial convexity decreased. Facial soft tissues masked the facial skeletal convexity, and the soft tissue changes were smaller than skeletal changes. In conclusion, the headgear treatment with the expanded inner bow may be used as an easy and simple method for Class II correction in growing children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Hepatic insulin resistance is a major risk factor for the development of type 2 diabetes and is associated with the accumulation of lipids, including diacylglycerol (DAG), triacylglycerols (TAG) and ceramide. There is evidence that enzymes involved in ceramide or sphingolipid metabolism may have a role in regulating concentrations of glycerolipids such as DAG and TAG. Here we have investigated the role of sphingosine kinase (SphK) in regulating hepatic lipid levels. We show that mice on a high-fat high-sucrose diet (HFHS) displayed glucose intolerance, elevated liver TAG and DAG, and a reduction in total hepatic SphK activity. Reduced SphK activity correlated with downregulation of SphK1, but not SphK2 expression, and was not associated with altered ceramide levels. The role of SphK1 was further investigated by overexpressing this isoform in the liver of mice in vivo. On a low-fat diet (LFD) mice overexpressing liver SphK1, displayed reduced hepatic TAG synthesis and total TAG levels, but with no change to DAG or ceramide. These mice also exhibited no change in gluconeogenesis, glycogenolysis or glucose tolerance. Similarly, overexpression of SphK1 had no effect on the pattern of endogenous glucose production determined during a glucose tolerance test. Under HFHS conditions, normalization of liver SphK activity to levels observed in LFD controls did not alter hepatic TAG concentrations. Furthermore, DAG, ceramide and glucose tolerance were also unaffected. In conclusion, our data suggest that SphK1 plays an important role in regulating TAG metabolism under LFD conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-13C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7–9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells.

RESULTS: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism.

CONCLUSION: These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.