985 resultados para Kinematic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in stride characteristics and gait rhythmicity characterize gait in Parkinson's disease and are widely believed to contribute to falls in this population. However, few studies have examined gait in PD patients who fall. This study reports on the complexities of walking in PD patients who reported falling during a 12-month follow-up. Forty-nine patients clinically diagnosed with idiopathic PD and 34 controls had their gait assessed using three-dimensional motion analysis. Of the PD patients, 32 (65%) reported at least one fall during the follow-up compared with 17 (50%) controls. The results showed that PD patients had increased stride timing variability, reduced arm swing and walked with a more stooped posture than controls. Additionally, PD fallers took shorter strides, walked slower, spent more time in double-support, had poorer gait stability ratios and did not project their center of mass as far forward of their base of support when compared with controls. These stride changes were accompanied by a reduced range of angular motion for the hip and knee joints. Relative to walking velocity, PD fallers had increased mediolateral head motion compared with PD nonfallers and controls. Therefore, head motion could exceed “normal” limits, if patients increased their walking speed to match healthy individuals. This could be a limiting factor for improving gait in PD and emphasizes the importance of clinically assessing gait to facilitate the early identification of PD patients with a higher risk of falling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In gait analysis, both shoe mounted and skin mounted markers have been used to quantify the movement of the foot inside the shoe. However, these models have not been demonstrated as reliable or accurate in shod conditions. The purpose of this study was to develop an accurate and reliable marker set to describe foot-shoe complex kinematics during stance phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-segment foot model was used to develop an accurate and reliable kinematic model to describe in-shoe foot kinematics during gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of marine vessels has traditionally been studied using two different approaches: manoeuvring and seakeeping. These two approaches use different reference frames and coordinate systems to describe the motion. This paper derives the kinematic models that characterize the transformation of motion variables (position, velocity, accelerations) and forces between the different coordinate systems used in these theories. The derivations hereby presented are done in terms of the formalism adopted in robotics. The advantage of this formulation is the use of matrix notation and operations. As an application, the transformation of linear equations of motion used in seakeeping into body-fixed coordinates is considered for both zero and forward speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.