232 resultados para Inundation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration projects to fail. Achieving successful rehabilitation in an ASS affected area requires an understanding of the geochemical conditions that influence the establishment and growth of mangrove seedlings. This study evaluated the effect of tidal inundation on geochemical conditions on sub layer to better understand their impacts on the density, establishment, and growth of mangrove seedlings. This study also examined the geochemical conditions under which mangrove seedlings can establish naturally, and/or be replanted in abandoned aquaculture ponds. The study area was in an area of abandoned aquaculture ponds situated in the Mare District, adjacent to Bone Bay, South Sulawesi, Indonesia.The pH, pHfox, redox potential, organic content, water soluble sulfate, SKCl, SPOS, and grain size of the soil from the sediment core at + 10 - 15 cm depth near roots were measured using. Pyrite analysis were conducted for the top and sub sediments. The density, establishment, and the relative root growth of Rhizophoraceae were also determined. Free tidal inundation at abandoned pond sites improved the sediment quality. The high density, establishment, and growth of mangrove seedlings were characterized by freely drained areas with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. Higher density and growth also correlated to reduced environments. Sulfur species did not influence the density, establishment, and growth of the seedlings directly. The supply of propagules from the mangrove stands, or access from good waterways were also important for seedlings to establish naturally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale estimates of the area of terrestrial surface waters have greatly improved over time, in particular through the development of multi-satellite methodologies, but the generally coarse spatial resolution (tens of kms) of global observations is still inadequate for many ecological applications. The goal of this study is to introduce a new, globally applicable downscaling method and to demonstrate its applicability to derive fine resolution results from coarse global inundation estimates. The downscaling procedure predicts the location of surface water cover with an inundation probability map that was generated by bagged derision trees using globally available topographic and hydrographic information from the SRTM-derived HydroSHEDS database and trained on the wetland extent of the GLC2000 global land cover map. We applied the downscaling technique to the Global Inundation Extent from Multi-Satellites (GIEMS) dataset to produce a new high-resolution inundation map at a pixel size of 15 arc-seconds, termed GIEMS-D15. GIEMS-D15 represents three states of land surface inundation extents: mean annual minimum (total area, 6.5 x 10(6) km(2)), mean annual maximum (12.1 x 10(6) km(2)), and long-term maximum (173 x 10(6) km(2)); the latter depicts the largest surface water area of any global map to date. While the accuracy of GIEMS-D15 reflects distribution errors introduced by the downscaling process as well as errors from the original satellite estimates, overall accuracy is good yet spatially variable. A comparison against regional wetland cover maps generated by independent observations shows that the results adequately represent large floodplains and wetlands. GIEMS-D15 offers a higher resolution delineation of inundated areas than previously available for the assessment of global freshwater resources and the study of large floodplain and wetland ecosystems. The technique of applying inundation probabilities also allows for coupling with coarse-scale hydro-climatological model simulations. (C) 2014 Elsevier Inc All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise and inundation were stated to be the highest priorities in the community-developed Ocean Research Priorities Plan and Implementation Strategy in 2005. Although they remain stated priorities, very few resources have been allocated towards this challenge. Inundation poses a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise along our vulnerable shorelines. (PDF contains 4 pages) There is an increasing urgency for federal and state governments to focus on the local and regional levels and consistently provide the information, tools, and methods necessary for adaptation. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. A workshop held in December 2000 on coastal inundation and sea level rise proposes a shared framework that can help guide where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the wide variety of ways in which remotely sensed data are being utilized in river flood inundation modeling. Model parameterization is being aided using airborne LiDAR data to provide topography of the floodplain for use as model bathymetry, and vegetation heights in the floodplain for use in estimating floodplain friction factors. Model calibration and validation are being aided by comparing the flood extent observed in SAR images with the extent predicted by the model. The recent extension of this to the observation of urban flooding using high resolution TerraSAR-X data is described. Possible future research directions are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.