938 resultados para Intrinsic optical imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il est relativement bien établi que les crises focales entraînent une augmentation régionale du flot sanguin dans le but de soutenir la demande énergétique en hémoglobine oxygénée des neurones épileptiques. Des changements hémodynamiques précoces ont également été rapportés dans la région homologue controlatérale, bien que ceci ait été moins bien caractérisé. Dans cette étude, notre objectif est de mieux caractériser, lors de crises focales, la nature des changements hémodynamiques précoces dans la région homologue controlatérale au foyer épileptique. L'imagerie optique intrinsèque (IOI) et la microscopie deux-photons sont utilisées pour étudier les changements hémodynamiques dans la région homologue controlatérale au site de crises focales induites par l’injection de 4-aminopyridine (4-AP) dans le cortex somatosensitif ipsilatéral de souris. Dans l'étude d'IOI, des changements de l’oxyhémoglobine (HbO), de la désoxyhémoglobine (HbR) et du débit sanguin cérébral ont été observées dans la région homologue controlatérale au site de crises focales lors de toutes les crises. Toutefois, ces changements étaient hétérogènes, sans patron cohérent et reproduisible. Nos expériences avec la microscopie deux-photons n’ont pas révélé de changements hémodynamiques significatifs dans la région homotopique controlatérale lors de trains de pointes épileptiques. Nos résultats doivent être interprétés avec prudence compte tenu de plusieurs limitations: d’une part absence de mesures électrophysiologiques dans la région d’intérêt controlatérale au foyer simultanément à l’imagerie deux-photons et à l'IOI; d’autre part, lors des expériences avec le deux-photons, incapacité à générer de longues décharges ictales mais plutôt des trains de pointes, couverture spatiale limitée de la région d’intérêt controlatérale, et faible puissance suite au décès prématuré de plusieurs souris pour diverses raisons techniques. Nous terminons en discutant de divers moyens pour améliorer les expériences futures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurons in primary visual cortex (area 17) respond vigorously to oriented stimuli within their receptive fields; however, stimuli presented outside the suprathreshold receptive field can also influence their responses. Here we describe a fundamental feature of the spatial interaction between suprathreshold center and subthreshold surround. By optical imaging of intrinsic signals in area 17 in response to a stimulus border, we show that a given stimulus generates activity primarily in iso-orientation domains, which extend for several millimeters across the cortical surface in a manner consistent with the architecture of long-range horizontal connections in area 17. By mapping the receptive fields of single neurons and imaging responses from the same cortex to stimuli that include or exclude the aggregate suprathreshold receptive field, we show that intrinsic signals strongly reveal the subthreshold surround contribution. Optical imaging and single-unit recording both demonstrate that the relative contrast of center and surround stimuli regulates whether surround interactions are facilitative or suppressive: the same surround stimulus facilitates responses when center contrast is low, but suppresses responses when center contrast is high. Such spatial interactions in area 17 are ideally suited to contribute to phenomena commonly regarded as part of "higher-level" visual processing, such as perceptual "popout" and "filling-in."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the intrinsic signals in response to grating stimuli in order to determine whether the light-evoked intrinsic signals of the retina are due to changes in the photoreceptor activities induced by the image projected on to the retina or are due to neural activities of the inner retina. The retinas of the left eye of 12 cats under general anesthesia were examined by a functional imaging fundus camera. Near infrared light was used to monitor the reflectance changes (RCs) of the retina. Vertical grating were used to stimulate the retina at 4 Hz. The spatial frequencies of the gratings were 0.05, 0.11, 0.22, 0.43, 0.86, 1.73, and 3.46 cycles/degree (cpd). Ten images were averaged and used to analyze the RCs to obtain the peak value (PV) of a two dimensional fast Fourier transfer of the RCs. The wavefront aberrations (WA) were measured with a compact wavefront aberrometer and the spatial modulation transfer function (MTF) of the eye was calculated. The retinal reflectance image had a grating pattern. The PV of the spatial sensitivity curve was highest at low spatial frequencies (0.05 and 0.11 cpd), and the sensitivity decreased steeply with an increase in the spatial frequency. RCs were not detectable at 3.46 cpd. The MTF decreased gradually with increases in the spatial frequencies and was 0.68 at 3.46 cpd. The reflectance pattern of the retinal intrinsic signal elicited by grating stimuli of different spatial frequencies was different from that of the MTF. This suggests that the intrinsic signal represents not only the response of the photoreceptors but also other neuronal or vascular changes in the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the radio-optical imaging of ATLBS, a sensitive radio survey (Subrahmanyan et al. 2010). The primary aim of the ATLBS survey is to image low-power radio sources which form the bulk of the radio source population to moderately high red-shifts (z similar to 1.0). The accompanying multiband optical and near infra-red observations provide information about the hosts and environments of the radio sources. We give here details of the imaging of the radio data and optical data for the ATLBS survey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some photosensitizers (PSs) used for PACT (Antimicrobial Photodynamic Therapy) show an affinity for bacterial walls and can be photo-activated to cause the desired damage. However, on dentine bacterias may be less susceptible to PACT as a result of limited penetration of the PS. The aim of this study was to evaluate the diffusion of one PS based on hematoporphyrin on dentine structures. Twelve bovine incisors were used. Class III cavities (3 x 3 x 1 mm) were prepared on the mesial or distal surfaces using a diamond bur. Photogem (R) solution at 1 mg/mL (10 uL for each cavity) was used. The experimental Groups were divided according to thickness of dentine remaining and etched or no-etched before the PS application. The fluorescence excitation source was a VelScope (R) system. For image capture a scientific CCD color camera PixelFly (R) was coupled to VelScope. For image acquisition and processing, a computational routine was developed at Matlab (R). Fick's Law was used to obtain the average diffusion coefficient of PS. Differences were found between all Groups. The longitudinal temporal diffusion was influenced by the different times, thickness and acid etching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.