98 resultados para Interleukins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells). METHODS: KB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured. RESULTS: All periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586. CONCLUSION: Anaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute infection with the hepatitis C virus (HCV) induces a wide range of innate and adaptive immune responses. A total of 20-50% of acutely HCV-infected individuals permanently control the virus, referred to as 'spontaneous hepatitis C clearance', while the infection progresses to chronic hepatitis C in the majority of cases. Numerous studies have examined host genetic determinants of hepatitis C infection outcome and revealed the influence of genetic polymorphisms of human leukocyte antigens, killer immunoglobulin-like receptors, chemokines, interleukins and interferon-stimulated genes on spontaneous hepatitis C clearance. However, most genetic associations were not confirmed in independent cohorts, revealed opposing results in diverse populations or were limited by varying definitions of hepatitis C outcomes or small sample size. Coordinated efforts are needed in the search for key genetic determinants of spontaneous hepatitis C clearance that include well-conducted candidate genetic and genome-wide association studies, direct sequencing and follow-up functional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent airway obstruction (RAO), or heaves, is a naturally occurring asthma-like disease that is related to sensitisation and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. A genome-wide scanning approach using two half-sibling families was taken in order to locate the chromosome regions that contribute to the inherited component of this condition in these families. Initially, a panel of 250 microsatellite markers, which were chosen as a well-spaced, polymorphic selection covering the 31 equine autosomes, was used to genotype the two half-sibling families, which comprised in total 239 Warmblood horses. Subsequently, supplementary markers were added for a total of 315 genotyped markers. Each half-sibling family is focused around a severely RAO-affected stallion, and the phenotype of each individual was assessed for RAO and related signs, namely, breathing effort at rest, breathing effort at work, coughing, and nasal discharge, using an owner-based questionnaire. Analysis using a regression method for half-sibling family structures was performed using RAO and each of the composite clinical signs separately; two chromosome regions (on ECA13 and ECA15) showed a genome-wide significant association with RAO at P < 0.05. An additional 11 chromosome regions showed a more modest association. This is the first publication that describes the mapping of genetic loci involved in RAO. Several candidate genes are located in these regions, a number of which are interleukins. These are important signalling molecules that are intricately involved in the control of the immune response and are therefore good positional candidates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Recurrent urticaria (RU) is a common skin disease of horses, but little is known about its pathogenesis. HYPOTHESIS/OBJECTIVE The aim of this study was to characterize the inflammatory cell infiltrate and cytokine expression pattern in the skin of horses with RU. ANIMALS   Biopsies of lesional and nonlesional skin of horses with RU (n = 8) and of skin from healthy control horses (n = 8) were evaluated. METHODS The inflammatory cell infiltrate was analysed by routine histology. Immunohistochemistry was used to identify T cells (CD3), B  ells (CD79), macrophages (MAC387) and mast cells (tryptase). Expression of T-helper 2 cytokines (interleukins IL-4, IL-5 and IL-13), a T-helper 1 cytokine (interferon-γ), IL-4 receptor α and thymic stromal lymphopoietin was assessed by quantitative RT-PCR. Results -  In subepidermal lesional skin of RU-affected horses, increased numbers of eosinophils (P ≤ 0.01), CD79-positive (P ≤ 0.01), MAC387-positive (P ≤ 0.01) and tryptase-positive cells (P ≤ 0.05) were found compared with healthy horses. Subepidermal lesional skin of RU-affected horses contained more eosinophils (P ≤ 0.05) and tryptase-positive cells (P ≤ 0.05) compared with nonlesional skin. There was no significant difference in infiltrating cells between nonlesional skin and skin of healthy horses. Expression of IL-4 (P ≤ 0.01), IL-13 (P ≤ 0.05), thymic stromal lymphopoietin (P ≤ 0.05) and IL-4 receptor α (P ≤ 0.05) was increased in lesional skin of RU-affected horses compared with control horses. Expression of IL-4 was higher (P ≤ 0.05) in lesional compared with nonlesional RU skin. CONCLUSIONS AND CLINICAL IMPORTANCE Analysis of cytokine expression and inflammatory infiltrate suggests that T-helper 2 cytokines, eosinophils, mast cells and presumptive macrophages play a role in the pathogenesis of equine RU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assembly and mutual proximities of α, β, and γc subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2Rα, IL-2Rβ, and γc subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2–10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2Rβ-α, γ-α, and γ-β pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a “triangular model” in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific α receptors with the β and/or γc subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin 16 (IL-16) has been shown to function as chemoattractant factor, as a modulator of T-cell activation, and as an inhibitor of immunodeficiency virus replication. The recent identification of inconsistencies in published IL-16 cDNA nucleotide sequences led to the proposal that IL-16 is synthesized in the form of a large precursor protein (pro-IL-16). To identify the true transcriptional start of the IL-16 mRNA rapid amplification of cDNA ends methods were applied. The complete pro-IL-16 cDNA was subsequently molecularly cloned, sequenced, and expressed in COS-7 cells. We report here that pro-IL-16 is most likely synthesized as a 67-kDa protein and is encoded from a major 2.6-kb transcript. Recombinant pro-IL-16 polypeptides are specifically cleaved in lysates of CD8(+) cells, suggesting that the naturally secreted bioactive form of IL-16 is smaller than the originally published 130 amino acids fragment. Moreover, in contrast to other interleukins such as IL-15, IL-16 mRNA expression is almost exclusively limited to lymphatic tissues underlining the potential of IL-16 as an immune regulatory molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematopoiesis gives rise to blood cells of different lineages throughout normal life. Abnormalities in this developmental program lead to blood cell diseases including leukemia. The establishment of a cell culture system for the clonal development of hematopoietic cells made it possible to discover proteins that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, and the molecular basis of normal and abnormal blood cell development. These regulators include cytokines now called colony-stimulating factors (CSFs) and interleukins (ILs). There is a network of cytokine interactions, which has positive regulators such as CSFs and ILs and negative regulators such as transforming growth factor beta and tumor necrosis factor (TNF). This multigene cytokine network provides flexibility depending on which part of the network is activated and allows amplification of response to a particular stimulus. Malignancy can be suppressed in certain types of leukemic cells by inducing differentiation with cytokines that regulate normal hematopoiesis or with other compounds that use alternative differentiation pathways. This created the basis for the clinical use of differentiation therapy. The suppression of malignancy by inducing differentiation can bypass genetic abnormalities that give rise to malignancy. Different CSFs and ILs suppress programmed cell death (apoptosis) and induce cell multiplication and differentiation, and these processes of development are separately regulated. The same cytokines suppress apoptosis in normal and leukemic cells, including apoptosis induced by irradiation and cytotoxic cancer chemotherapeutic compounds. An excess of cytokines can increase leukemic cell resistance to cytotoxic therapy. The tumor suppressor gene wild-type p53 induces apoptosis that can also be suppressed by cytokines. The oncogene mutant p53 suppresses apoptosis. Hematopoietic cytokines such as granulocyte CSF are now used clinically to correct defects in hematopoiesis, including repair of chemotherapy-associated suppression of normal hematopoiesis in cancer patients, stimulation of normal granulocyte development in patients with infantile congenital agranulocytosis, and increase of hematopoietic precursors for blood cell transplantation. Treatments that decrease the level of apoptosis-suppressing cytokines and downregulate expression of mutant p53 and other apoptosis suppressing genes in cancer cells could improve cytotoxic cancer therapy. The basic studies on hematopoiesis and leukemia have thus provided new approaches to therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukins 4 (IL-4) and 13 (IL-13) have been found previously to share receptor components on some cells, as revealed by receptor cross-competition studies. In the present study, the cloning is described of murine NR4, a previously unrecognized receptor identified on the basis of sequence similarity with members of the hemopoietin receptor family. mRNA encoding NR4 was found in a wide range of murine cells and tissues. By using transient expression in COS-7 cells, NR4 was found to encode the IL-13 receptor alpha chain, a low-affinity receptor capable of binding IL-13 but not IL-4 or interleukins 2, -7, -9, or -15. Stable expression of the IL-13 receptor alpha chain (NR4) in CTLL-2 cells resulted in the generation of high-affinity IL-13 receptors capable of transducing a proliferative signal in response to IL-13 and, moreover, led to competitive cross-reactivity in the binding of IL-4 and IL-13. These results suggest that the IL-13 receptor alpha chain (NR4) is the primary binding subunit of the IL-13 receptor and may also be a component of IL-4 receptors.