960 resultados para Insulin Receptor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To investigate the action of palmitate on insulin receptor (IR) signaling pathway in rat pancreatic islets. The following proteins were studied: IR substrate-1 and -2 (IRS1 and IRS2), phosphatidylinositol 3-kinase, extracellular signal-regulated protein kinase-1 and -2 (ERK1/2), and signal transducer and activator of transcription 3 (STAT3). Methods: Immunoblotting and immunoprecipitation assays were used to evaluate the phosphorylation states of IRS1 and IRS2 (tyrosine [Tyr]), ERK1/2 (threonine 202 [Thr202]/Tyr204), and STAT3 (serine [Ser727]). Results: The exposure of rat pancreatic islets to 0.1-mmol/L palmitate for up to 30 minutes produced a significant increase of Tyr phosphorylation in IRS2 but not in IRS1. The association of phosphatidylinositol 3-kinase with IRS2 was also upregulated by palmitate. Exposure to 5.6-mmol/L glucose caused a gradual decrease in ERK1/2 (Thr202/Tyr204) and STAT3 (serine [Ser727]) phosphorylations after 30-minute incubation. The addition of palmitate (0.1 mmol/L), associated with 5.6-mmol/L glucose, abolished these latter effects of glucose after 15-minute incubation. Conclusions: Palmitate at physiological concentration associated with 5.6-mmol/L glucose activates IR signaling pathway in pancreatic A cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNF alpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity. Journal of Endocrinology (2010) 206, 65-74

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 ± 2% of peak O2 uptake for 60 min/day. Muscle biopsies were taken before, immediately after, and 3 h after the exercise bouts (on days 1 and 9). The gene expression of insulin receptor substrate-2 and the p85α subunit of phosphatidylinositol 3-kinase was significantly higher 3 h after a single exercise bout, although short-term training ameliorated this effect. Gene expression of insulin receptor and insulin receptor substrate-1 was not significantly altered at any time point. These results suggest that exercise may have a transitory impact on the expression of insulin receptor substrate-2 and phosphatidylinositol 3-kinase; however, the predominant actions of exercise on insulin sensitivity appear not to reside in the transcriptional activation of the genes encoding major insulin-signaling proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise increases skeletal muscle insulin action but the underlying mechanisms mediating this are equivocal. In mouse skeletal muscle, prior exercise enhances insulin-stimulated insulin receptor substrate-2 (IRS-2) signaling (Diabetes 2002;51:479-83), but it is unknown if this also occurs in humans. Hyperinsulinemic-euglycemic clamps were performed on 7 untrained males at rest and immediately after 60 minutes of cycling exercise at ~75% Vo2peak. Muscle biopsies were obtained at basal, immediately after exercise, and at 30 and 120 minutes of hyperinsulinemia. Insulin infusion increased (P < .05) insulin receptor tyrosine phosphorylation similarly in both the rest and exercise trials. Under resting conditions, insulin infusion resulted in a small, but non–statistically significant increase in IRS-2–associated phosphatidylinositol 3 (PI 3)–kinase activity over basal levels. Exercise per se decreased (P < .05) IRS-2–associated PI 3–kinase activity. After exercise, insulin-stimulated IRS-2–associated PI 3–kinase activity tended to increase at 30 minutes and further increased (P < .05) at 120 minutes when compared with the resting trial. Insulin increased (P < .05) Akt Ser473 and GSK-3α/β Ser21/Ser9 phosphorylation in both trials, with the response tending to be higher in the exercise trial. In conclusion, in the immediate period after an acute bout of exercise, insulin-stimulated IRS-2 signaling is enhanced in human skeletal muscle.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vanadate has insulin-like effects in adipocytes without stimulating insulin receptor kinase activity. However, it activates IRS-1 associated PI 3-kinase, suggesting that it mimics insulin effects by stimulating signaling elements downstream of PI 3-kinase. Here we analysed the stimulation of MAPK by insulin and vanadate and observed that both elicit a rapid 3.5–4 fold activation which is abolished by wortmannin and PD98059. Simultaneous addition of insulin and vanadate does not result in an additive effect neither on MAPK nor in MEK. Whereas insulin action is transient, vanadate stimulation lasts up to 20 min. In insulin-resistant adipocytes from old rats, insulin stimulates poorly MAPK, whereas a normal activation is achieved with vanadate. We conclude that: (a) insulin and vanadate use a common signaling pathway from PI 3-kinase to MEK and MAPK; (b) vanadate but not insulin, elicits a sustained activation of both enzymes; (c) this pathway is functional in old rat adipocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cb-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant
increase in activity (2- to 3-fold). In addition, cc-Cb-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These fmdings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14-/- mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer473and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 ± 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased (~30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer473was ~50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer473and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer473on the improvement in insulin sensitivity requires further elucidation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective
To investigate tenocyte regulatory events during the development of overuse supraspinatus tendinosis in rats.

Methods
Supraspinatus tendinosis was induced by running rats downhill at 1 km/hour for 1 hour a day. Tendons were harvested at 4, 8, 12, and 16 weeks and processed for brightfield, polarized light, or transmission electron microscopy. The development of tendinosis was assessed semiquantitatively using a modified Bonar histopathologic scale. Apoptosis and proliferation were examined using antibodies against fragmented DNA or proliferating cell nuclear antigen, respectively. Insulin-like growth factor 1 (IGF-1) expression was determined by computer-assisted quantification of immunohistochemical reaction. Local IGF-1 signaling was probed using antibodies to phosphorylated insulin receptor substrate 1 (IRS-1) and ERK-1/2.

Results
Tendinosis was present after 12 weeks of downhill running and was characterized by tenocyte rounding and proliferation as well as by glycosaminoglycan accumulation and collagen fragmentation. The proliferation index was elevated in CD90+ tenocytes in association with tendinosis and correlated with increased local IGF-1 expression by tenocytes and phosphorylation of IRS-1 and ERK-1/2. Both apoptosis and cellular inflammation were absent at all time points.

Conclusion
In this animal model, early tendinosis was associated with local stimulation of tenocytes rather than with extrinsic inflammation or apoptosis. Our data suggest a role for IGF-1 in the load-induced tenocyte responses during the pathogenesis of overuse tendon disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AS160 is an Akt substrate of 160 kDa implicated in the regulation of both insulin- and contraction-mediated GLUT4 translocation and glucose uptake. The effects of aerobic exercise and subsequent insulin stimulation on AS160 phosphorylation and the binding capacity of 14-3-3, a novel protein involved in the dissociation of AS160 from GLUT4 vesicles, in human skeletal muscle are unknown. Hyperinsulinemic-euglycemic clamps were performed on seven men at rest and immediately and 3 h after a single bout of cycling exercise. Skeletal muscle biopsies were taken before and after the clamps. The insulin sensitivity index calculated during the final 30 min of the clamp was 8.0 ± 0.8, 9.1 ± 0.5, and 9.2 ± 0.8 for the rest, postexercise, and 3-h postexercise trials, respectively. AS160 phosphorylation increased immediately after exercise and remained elevated 3 h after exercise. In contrast, the 14-3-3 binding capacity of AS160 and phosphorylation of Akt and AMP-activated protein kinase were only increased immediately after exercise. Insulin increased AS160 phosphorylation and 14-3-3 binding capacity and insulin receptor substrate-1 and Akt phosphorylation, but the response to insulin was not enhanced by prior exercise. In conclusion, the 14-3-3 binding capacity of AS160 is increased immediately after acute exercise in human skeletal muscle, but this is not maintained 3 h after exercise completion despite sustained AS160 phosphorylation. Insulin increases AS160 phosphorylation and 14-3-3 binding capacity, but prior exercise does not appear to enhance the response to insulin.