995 resultados para Insecticide resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most parts of China, mosquitoes have been subjected to organophosphate (OP) insecticide treatments since the mid-1960s, and resistance gene monitoring in the Culex pipiens complex (Diptera: Culicidae) started in only a few locations from the end of the 1980s. Many resistant alleles at the Ester locus have been found in field populations, including those commonly found around the world (Ester(B1) and Ester(2)), and those endemic to China (Ester(B6), Ester(B7), Ester(8), and Ester(9)). This situation is atypical, and may represent a complex situation for the evolution of insecticide resistance genes in China. To increase our understanding of the Chinese situation and our ability to manage resistance in the C. pipiens complex, a large study was performed. Twenty field populations were sampled from Beijing to Guangzhou. Bioassays with five insecticides (dichlorvos, parathion, chlorpyrifos, 2-sec-butylphenyl methyl carbamate, and propoxur) disclosed resistance levels variable according to the geographic origin, and up to 85-fold for dichlorvos. Six overproduced esterases were identified, including two that have not been previously described. Most of them were found in all samples, although at variable frequencies, suggesting variable selection or a transient situation, e.g., each one was recently restricted to a particular geographic area. The results are discussed in the context of recent alterations to insecticide campaigns, and of the evolution of resistance genes in Chinese C. pipiens populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fully susceptible genotype (4106A) of Myzus persicae survived the longest on an artificial diet and, in several of the eight replicates, monitoring was terminated when the culture was still thriving. A genotype with elevated carboxylesterase FE4 at the R3 level (800F) had a mean survival of only 98.13 days, whereas 794J, which combines R3 E4 carboxylesterase with target-site resistance (knockdown resistance), survived for the even shorter mean time of 84.38 days. The poorer survival of the two genotypes with extremely elevated carboxylesterase-resistance was not the result of a reluctance to transfer to new diet at each diet change. Although available for only two replicates, a revertant clone of 794J (794Jrev), which has the same genotype as 794J but the amplified E4 genes are not expressed leading to a fully susceptible phenotype, did not appear to survive any better than this clone. This suggests that the poor survival on an artificial diet of the extreme-carboxylesterase genotypes is not the result of the cost of over-producing the enzyme. The frequency of insecticide-resistant genotypes is low in the population until insecticide is applied, indicating that they have reduced fitness, although this does not necessarily reflect a direct cost of expressing the resistance mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different P450 genes such as Cyp12d1 and Cyp6a8 can also be selected using DDT in the laboratory. We also show, however, that a homolog of Cyp6g1 is over-expressed in a field resistant strain of D. simulans. In order to determine why Cyp6g1 is so widely selected in the field we examine the pattern of cross-resistance of both resistant strains and transgenic flies over-expressing Cyp6g1 alone. We show that all three DDT selected P450s can confer resistance to the neonicotinoid imidacloprid but that Cyp6a8 confers no cross-resistance to malathion. Transgenic flies over-expressing Cyp6g1 also show cross-resistance to other neonicotinoids such as acetamiprid and nitenpyram. We suggest that the broad level of cross-resistance shown by Cyp6g1 may have facilitated its selection as a resistance gene in natural Drosophila populations. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to organophosphorus (OP) insecticides is associated with decreased carboxylesterase activity in several insect species. It has been proposed that the resistance may be the result of a mutation in a carboxylesterase that simultaneously reduces its carboxylesterase activity and confers an OP hydrolase activity (the “mutant ali-esterase hypothesis”). In the sheep blowfly, Lucilia cuprina, the association is due to a change in a specific esterase isozyme, E3, which, in resistant flies, has a null phenotype on gels stained using standard carboxylesterase substrates. Here we show that an OP-resistant allele of the gene that encodes E3 differs at five amino acid replacement sites from a previously described OP-susceptible allele. Knowledge of the structure of a related enzyme (acetylcholinesterase) suggests that one of these substitutions (Gly137 → Asp) lies within the active site of the enzyme. The occurrence of this substitution is completely correlated with resistance across 15 isogenic strains. In vitro expression of two natural and two synthetic chimeric alleles shows that the Asp137 substitution alone is responsible for both the loss of E3’s carboxylesterase activity and the acquisition of a novel OP hydrolase activity. Modeling of Asp137 in the homologous position in acetylcholinesterase suggests that Asp137 may act as a base to orientate a water molecule in the appropriate position for hydrolysis of the phosphorylated enzyme intermediate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Management of insecticide resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Bruchid beetles, Callosobruchus species, are serious pests of economically important grain legumes; their activity in stores is often controlled by use of synthetic insecticides. Esterases are known to be involved in insecticide resistance in insects. However, there is dearth of information on esterase activity in the genus Callosobruchus. In this study we investigated the effect of species, geographical strain and food type on the variation of acetylcholinesterase (AChE) activity and its inhibition by malaoxon (malathion metabolite) using an in vitro spectrophotometric method. RESULT: AChE activity varied significantly among species and strains and also among legume type used for rearing them. Generally irrespective of species, strain or food type, the higher the AChE activity of a population, the higher its inhibition by malaoxon. C. chinensis had the highest AChE activity of the species studied and in the presence of malaoxon it had the lowest remaining AChE activity, while C. rhodesianus retained the highest activity. CONCLUSION: A firsthand knowledge of AChE activity in regional Callosobruchus in line with the prevailing food types should be of utmost importance to grain legume breeders, researchers on plant materials for bruchid control and pesticide manufacturer/applicators for a robust integrated management of these bruchids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the kdr (knockdown resistance) resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans) populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South) were molecular screened through polymerase chain reaction (PCR). The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE) was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population). This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)