948 resultados para Inflammatory Joint Diseases


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and aims. Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts eventually leading to biliary cirrhosis. Recent genetic studies in PSC have identified associations at 2q13, 2q35, 3p21, 4q27, 13q31 and suggestive association at 10p15. The aim of this study was to further characterize and refine the genetic architecture of PSC. Methods. We analyzed previously reported associated SNPs at four of these non-HLA loci and 59 SNPs tagging the IL-2/IL-21 (4q27) and IL2RA (10p15) loci in 992 UK PSC cases and 5162 healthy UK controls. Results. The most associated SNPs identified were rs3197999 (3p21 (MST1), p = 1.9 × 10 -6, OR A vs G = 1.28, 95% CI (1.16-1.42)); rs4147359 (10p15 (IL2RA), p = 2.6 × 10 -4, OR A vs G = 1.20, 95% CI (1.09-1.33)) and rs12511287 (4q27 (IL-2/IL-21), p = 3.0 × 10 -4, OR A vs T = 1.21, 95% CI (1.09-1.35)). In addition, we performed a meta-analysis for selected SNPs using published summary statistics from recent studies. We observed genome-wide significance for rs3197999 (3p21 (MST1), P combined = 3.8 × 10 -12) and rs4147359 (10p15 (IL2RA), P combined = 1.5 × 10 -8). Conclusion. We have for the first time confirmed the association of PSC with genetic variants at 10p15 (IL2RA) locus at genome-wide significance and replicated the associations at MST1 and IL-2/IL-21 loci in a large homogeneous UK population. These results strongly implicate the role of IL-2/IL2RA pathway in PSC and provide further confirmation of MST1 association. © Informa Healthcare.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of joint diseases such as osteoarthritis is difficult and requires extensive developments for adequate solutions to emerge. Continued innovation in projects explored in this thesis may be beneficial to understanding the requirements of the joint environment. This may then lead to constructs that perform desirably from both mechanical and biological standpoints, resulting in complete, tissue-engineered osteochondral solutions. This thesis investigated specific scaffold designs for bone and osteochondral tissue engineering, as well as the formation of complex criteria on which cartilage hydrogel scaffolds may be assessed. The combination of hydrogels and ceramics were found to maintain chondrogenesis, while the concentration of photoinitiators in photocrosslinkable hydrogel systems may be optimised to maximise mechanical properties and cell viability. Finally, viscoelasticity of hydrogel blends was assessed using oscillatory motion, demonstrating the property is tailorable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Objective: Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular b asis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes.Material and Methods:Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription-polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation.Results:Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase.Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scabies is an ectoparasitic infestation by the mite Sarcoptes scabiei. Although commonly self-limiting, a fraction of patients develop severely debilitating crusted scabies. The immune mechanisms underlying the development of crusted scabies are unclear, and undertaking longitudinal infection studies in humans is difficult. We utilized a porcine model to compare cellular immune responses in peripheral blood and skin of pigs with different clinical manifestations of scabies (n = 12), and in uninfected controls (n = 6). Although clinical symptoms were not evident until at least 4 weeks post-infestation, the numbers of peripheral IFNγ-secreting CD4+ T cells and γδ T cells increased in infected pigs from week 1 post-infestation. γδ T cells remained increased in the blood at week 15 post-infestation. At week 15, skin cell infiltrates from pigs with crusted scabies had significantly higher CD8+ T cell, γδ T cell and IL-17+ cell numbers than those with ordinary scabies. Peripheral IL-17 levels were not increased, suggesting that localized skin IL-17-secreting T cells may play a critical role in the pathogenesis of crusted scabies development. Given the potential of anti-IL-17 immunotherapy demonstrated for other inflammatory skin diseases, this study may provide a novel therapeutic avenue for patients with recurrent crusted scabies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) represent a family of 23 metalloendopeptidases, collectively capable of degrading all components of the extracellular matrix. MMPs have been implicated in several inflammatory processes such as arthritis, atherosclerosis, and even carcinomas. They are also involved in several beneficial activities such as epithelial repair. MMPs are inhibited by endogenous tissue inhibitors of matrix metalloproteinases (TIMP). In this study, MMPs were investigated in intestinal mucosa of inflammatory bowel diseases (IBD), chronic intestinal disorders. The main focus was to characterize mucosal inflammation in the intestine, but also cutaneous pyoderma gangrenosum (PG), to assess similarites with IBD inflammation. MMPs and TIMPs were mainly examined in colonic mucosa, in adult Crohn s disease (CD), and paediatric CD, ulcerative colitis (UC), and indeterminate colitis (IC). Ileal pouch mucosa of proctocolectomized paediatric onset IBD patients was also investigated to characterize pouch mucosa. The focus was on finding specific MMPs that could act as markers to differentiate between different IBD disorders, and MMPs that could be implied as markers for tissue injury, potentially serving as targets for MMP-inhibitors. All examinations were performed using immunohistochemistry. The results show that immunosuppressive agents decrease stromal expression of MMP-9 and -26 that could serve as specific targets for MMP-inhibitors in treating CD. In paediatric colonic inflammation, MMP-10 and TIMP-3 present as molecular markers for IBD inflammation, and MMP-7 for CD. MMP expression in the the pouch mucosa could not be classified as strictly IBD- or non-IBD-like. For the first time, this study describes the expression of MMP-3, -7, -9, -12, and TIMP-2 and -3 in pouch mucosa. The MMP profile in PG bears resemblance to both intestinal IBD inflammation and cutaneous inflammation. Based on the results, MMPs and their inhibitors emerge as promising tools in the differential diagnosis of IBD and characterization of the disease subtype, although further research is necessary. Furthermore, the expression of several MMPs in pouch has been described for the first time. While further research is warranted, the findings contribute to a better understanding of events occurring in IBD mucosa, as well as pyoderma gangrenosum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlamydia pneumoniae can cause acute respiratory infections including pneumonia. Repeated and persistent Chlamydia infections occur and persistent C. pneumoniae infection may have a role in the pathogenesis of atherosclerosis and coronary heart disease and may also contribute to the development of chronic inflammatory lung diseases like chronic obstructive pulmonary disease (COPD) and asthma. In this thesis in vitro models for persistent C. pneumonia infection were established in epithelial and monocyte/macrophage cell lines. Expression of host cell genes in the persistent C. pneumoniae infection model of epithelial cells was studied by microarray and RT-PCR. In the monocyte/macrophage infection model expression of selected C. pneumoniae genes were studied by RT-PCR and immunofluorescence microscopy. Chlamydia is able to modulate host cell gene expression and apoptosis of host cells, which may assist Chlamydia to evade the host cells' immune responses. This, in turn, may lead to extended survival of the organism inside epithelial cells and promote the development of persistent infection. To simulate persistent C. pneumoniae infection in vivo, we set up a persistent infection model exposing the HL cell cultures to IFN-gamma. When HL cell cultures were treated with moderate concentration of IFN-gamma, the replication of C. pneumoniae DNA was unaffected while differentiation into infectious elementary bodies (EB) was strongly inhibited. By transmission electron microscopy small atypical inclusions were identified in IFN-gamma treated cultures. No second cycle of infection was observed in cells exposed to IFN-gamma , whereas C. pneumoniae was able to undergo a second cycle of infection in unexposed HL cells. Although monocytic cells can naturally restrict chlamydial growth, IFN-gamma further reduced production of infectious C. pneumoniae in Mono Mac 6 cells. Under both studied conditions no second cycle of infection could be detected in monocytic cell line suggesting persistent infection in these cells. As a step toward understanding the role of host genes in the development and pathogenesis of persistent C. pneumoniae infection, modulation of host cell gene expression during IFN-gamma induced persistent infection was examined and compared to that seen during active C. pneumoniae infection or IFN-gamma treatment. Total RNA was collected at 6 to 150 h after infection of an epithelial cell line (HL) and analyzed by a cDNA array (available at that time) representing approximately 4000 human transcripts. In initial analysis 250 of the 4000 genes were identified as differentially expressed upon active and persistent chlamydial infection and IFN-gamma treatment. In persistent infection more potent up-regulation of many genes was observed in IFN-gamma induced persistent infection than in active infection or in IFN-gamma treated cell cultures. Also sustained up-regulation was observed for some genes. In addition, we could identify nine host cell genes whose transcription was specifically altered during the IFN-gamma induced persistent C. pneumoniae infection. Strongest up-regulation in persistent infection in relation to controls was identified for insulin like growth factor binding protein 6, interferon-stimulated protein 15 kDa, cyclin D1 and interleukin 7 receptor. These results suggest that during persistent infection, C. pneumoniae reprograms the host transcriptional machinery regulating a variety of cellular processes including adhesion, cell cycle regulation, growth and inflammatory response, all of which may play important roles in the pathogenesis of persistent C. pneumoniae infection. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that the bacterium can also infect monocytic cells in vivo and thereby monocytes can assist the spread of infection from the lungs to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells and that IFN-gamma has a less significant effect on C. pneumoniae transcription in monocytes. Furthermore, our study shows that type III secretion system (T3SS) related genes are transcribed and that Chlamydia possesses a functional T3SS during infection in monocytes. Since C. pneumoniae infection in monocytes has been implicated to have reduced antibiotic susceptibility, this creates opportunities for novel therapeutics targeting T3SS in the management of chlamydial infection in monocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introdução: O infliximabe é um anticorpo monoclonal quimérico que inibe o fator de necrose tumoral, sendo usado em doenças autoimunes e/ou inflamatórias, tais como a artrite reumatóide (AR), a espondilite anquilosante (EA), a psoríase e a artrite psoriásica (AP) e as doenças inflamatórias intestinais (DII). Objetivos: Avaliar se o infliximabe induz à formação de autoanticorpos e verificar a ocorrência de eventos adversos, sobretudo o lúpus induzido por este medicamento. Metodologia: Trata-se de um estudo aberto, prospectivo, de fase IV, onde dosamos os autoanticorpos antes e depois do tratamento (das doenças citadas anteriormente), o qual teve duração mínima de 6 meses (5 infusões). Resultados: No total, 286 pacientes foram avaliados para o fator anti-nuclear (FAN) por imunofluorescência indireta em células Hep2, sendo significativo o aumento de número de indivíduos (p = 0,0001), antes e depois da medicação. Além do FAN, foram dosados, em 146 pacientes, 17 outros autoanticorpos pelo método multiplex, sendo que o anti-DNA de dupla hélice (anti-dsDNA) e o anticardiolipina IgM (aCL IgM) tiveram um aumento significativo (p = 0,003 e 0,0024, respectivamente). Pacientes com AR tiveram uma variação significativa nos títulos do anticorpo anti-proteína citrulinada (ACPA) (antes e depois do tratamento) (p = 0,012). De todos os pacientes avaliados (n = 286), somente 1 (0,35%) apresentou sinais clínicos e laboratoriais de lúpus induzido pelo infliximabe. Conclusão: O estudo demonstrou que o infliximabe interferiu na formação de autoanticorpos (FAN, anti-dsDNA, aCL IgM e ACPA), sendo rara a indução de lúpus pelo medicamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The intestinal immune system faces large amounts of antigens, and its regulation is tightly balanced by cytokines. In this study, the effect of intestinal flow diversion on spontaneous secretion of interleukin (IL)-4 and interferon (IFN)- gamma was analysed. METHODS: Eight patients (two with Crohn's disease, four with ulcerative colitis, and two with previous colon cancer) carrying a double lumen small bowel stoma after a total colectomy procedure were included in the study. For each patient, eight biopsy samples were taken endoscopically from both the diverted and non-diverted part of the small bowel. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated separately and assayed for numbers of cells spontaneously secreting IL-4 and/or IFN-gamma by an ELISPOT technique. RESULTS: Compared with the non-diverted mucosa, a significant decrease in the number of spontaneously IFN-gamma secreting CD3 lymphocytes was observed in the diverted small bowel mucosa among both IELs (p = 0.008) and LPLs (p = 0.007). The same results, although less significant, were obtained for IL-4, especially in LPLs (p = 0.01). CONCLUSION: The intestinal content influences the spontaneous secretion of IFN-gamma and IL-4 by intestinal lymphocytes. These results could help to elucidate the anti-inflammatory role of split ileostomy in patients suffering from inflammatory bowel diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.

Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.

Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis and the course of inflammatory skin diseases, including psoriasis. Posttranscriptional activation of IL-1β is mediated by inflammasomes; however, the mechanisms triggering IL-1β processing remain unknown. Recently, cytosolic DNA has been identified as a danger signal that activates inflammasomes containing the DNA sensor AIM2. In this study, we detected abundant cytosolic DNA and increased AIM2 expression in keratinocytes in psoriatic lesions but not in healthy skin. In cultured keratinocytes, interferon-γ induced AIM2, and cytosolic DNA triggered the release of IL-1β via the AIM2 inflammasome. Moreover, the antimicrobial cathelicidin peptide LL-37, which can interact with DNA in psoriatic skin, neutralized cytosolic DNA in keratinocytes and blocked AIM2 inflammasome activation. Together, these data suggest that cytosolic DNA is an important disease-associated molecular pattern that can trigger AIM2 inflammasome and IL-1β activation in psoriasis. Furthermore, cathelicidin LL-37 interfered with DNA-sensing inflammasomes, which thereby suggests an anti-inflammatory function for this peptide. Thus, our data reveal a link between the AIM2 inflammasome, cathelicidin LL-37, and autoinflammation in psoriasis, providing new potential targets for the treatment of this chronic skin disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are effectors of cutaneous innate immunity and protect primarily against microbial infections. An array of AMPs can be found in and on the skin. Those include peptides that were first discovered for their antimicrobial properties but also proteins with antimicrobial activity first characterized for their activity as chemokines, enzymes, enzyme inhibitors and neuropeptides. Cathelicidins were among the first families of AMPs discovered in skin. They are now known to exert a dual role in innate immune defense: they have direct antimicrobial activity and will also initiate a host cellular response resulting in cytokine release, inflammation and angiogenesis. Altered cathelicidin expression and function was observed in several common inflammatory skin diseases such as atopic dermatitis, rosacea and psoriasis. Until recently the molecular mechanisms underlying cathelicidin regulation were not known. Lately, vitamin D3 was identified as the major regulator of cathelicidin expression and entered the spotlight as an immune modulator with impact on both, innate and adaptive immunity. Therapies targeting vitamin D3 signalling may provide novel approaches for the treatment of infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions through AMP regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constant exposure to a wide variety of microbial pathogens represents a major challenge for our skin. Antimicrobial peptides (AMPs) are mediators of cutaneous innate immunity and protect primarily against microbial infections. Cathelicidins were among the first AMPs identified in human skin and recent evidence suggests that they exert a dual role in innate immune defense: At first, due to their antimicrobial activity they kill pathogens directly. In addition, these peptides initiate a potent host response to infection resulting in cytokine release, inflammation and a cellular response. Disturbed cathelicidin expression and function was observed in several common inflammatory skin diseases, such as psoriasis where cathelicidin peptide converts inert self-DNA and self-RNA into an autoimmune stimulus. In atopic dermatitis decreased levels of cathelicidin facilitating microbial superinfections have been discussed. Furthermore, abnormally processed cathelicidin peptides induce inflammation and a vascular response in rosacea. Until recently, the molecular mechanisms underlying cathelicidin regulation were unknown. Recently, the vitamin D3 pathway was identified as the major regulator of cathelicidin expression. Consequently, vitamin D3 entered the spotlight as an immune modulator with impact on both innate and adaptive immunity. Therapies targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions.