982 resultados para Induction machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks (NNs) are discussed in connection with their possible use in induction machine drives. The mathematical model of the NN as well as a commonly used learning algorithm is presented. Possible applications of NNs to induction machine control are discussed. A simulation of an NN successfully identifying the nonlinear multivariable model of an induction-machine stator transfer function is presented. Previously published applications are discussed, and some possible future applications are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, direct torque control (DTC) algorithms for a split-phase induction machine (SPIM) are established. An SPIM has two sets of three-phase stator windings, with a shift of thirty electrical degrees between them. The significant contributions of this paper are: 1) two new methods of DTC technique for an SPIM are developed, called Resultant Flux Control Method and Individual Flux Control Method and 2) advantages and disadvantages of both methods are discussed. High torque ripple is a disadvantage for three-phase DTC. It is found that torque ripple in an SPIM can be significantly reduced without increasing the switching frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper mainly concentrates on the application of the direct torque control (DTC) technique for the induction machine based integrated startergenerator (ISG) for automobile applications. It also discusses in brief about the higher DC bus voltage requirements in the automobiles i.e. present 14V system vs. 42V system to meet the power requirements, modes of operation of ISG, electric machine and the drive selection for the ISG,description of DTC technique, simulation and experimental results, and implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher level of inversion is achieved with a less number of switches in the proposed scheme. The scheme proposes a five-level inverter for an open-end winding induction motor which uses only two DC-link rectifiers of voltage rating of Vdc/4, a neutral-point clamped (NPC) three-level inverter and a two-level inverter. Even though the two-level inverter is connected to the high-voltage side, it is always in square-wave operation. Since the two-level inverter is not switching in a pulse width modulated fashion and the magnitude of switching transient is only half compared to the convention three-level NPC inverter, the switching losses and electromagnetic interference is not so high. The scheme is experimentally verified on a 2.5 kW induction machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents an accurate steady-state phasor model for a doubly fed induction machine. The drawback of existing steady-state phasor model is discussed. In particular, the inconsistency of existing equivalent model with respect to reactive power flows when operated at supersynchronous speeds is highlighted. Relevant mathematical basis for the proposed model is presented and its validity is illustrated on a 2-MW doubly fed induction machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents an alternate proof for the steady-state equivalent circuit of a doubly fed induction machine operating at supersynchronous speeds. The spatial orientation of rotating magnetic fields is used to validate the conjugation of rotor side quantities arising in supersynchronous mode. The equivalent circuit is further validated using dynamic simulations of a stand-alone machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.