998 resultados para Immunostimulatory Dna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hard remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cationic lipid dioctadecyldimethylammonium bromide (DODAB) and the CpG oligonucleotide (CpG) have been separately used as potent immunoadjuvants driving Th1 responses. Here DODAB bilayer fragments (BF) and CpG (5 -TTGACGTTCG-3) assemblies have their physical properties and immunoadjuvant activity determined using ovalbumin (OVA) as a model antigen. At 0.1 mg/mL OVA, the dependence of DODAB BF/OVA size and zeta-potential on time and [DODAB] establishes 0.1 mMDODAB as suitable for obtaining stable and cationic DODAB BF/OVA assemblies. At 0.1 mMDODAB, 0.1 mg/mL OVA and 0.006 mMCpG, the zeta-potential is zero. At [CpG]>0.006 mM, good colloidal stability for the anionic assemblies is due to charge overcompensation. At 0.020 mM CpG, these DODAB BF/OVA/CpG assemblies are highly effective in vivo generating responses similar to those elicited by the stable and cationic DODAB BF/OVA. The anti-OVA DTH reaction and the secretion of IFN-gamma and IL-12 are 6, 42 and 9 times larger for the DODAB BF/OVA/CpG-immunized mice than the same responses by OVA-immunized mice, respectively. This work shows for the first time that charge of small assemblies is not important to determine the immune response. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orally administered live Lactobacillus acidophilus was assessed for its capacity to enhance clearance from the oral cavity of DBA/2 mice shown previously to be 'infection prone'. L. acidophilus fed to DBA/2 mice significantly shortened the duration of colonization of the oral cavity compared to controls. Enhanced clearance of Candida albicans correlated with both early mRNA gene expression for interleukin (IL)-4 and interferon (IFN)-gamma and expression of their secreted products in cultures of cervical lymph nodes stimulated with Candida antigen. In addition rapid clearance correlated with higher levels of IFN-gamma and nitric oxide in saliva. Delayed clearance, less pronounced levels of the cytokine response, saliva IFN-gamma and nitric oxide, and later mRNA expression for IL-4 and IFN-gamma relative to feeding with the L. acidophilus isolate were noted in mice fed a different Lactobacillus isolate (L. fermentum). These observations indicate significant variations in individual isolates to activate the common mucosal system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Macrophages and B cells are activated by unmethylated CpG-containing sequences in bacterial DNA. The lack of activity of self DNA has generally been attributed to CpG suppression and methylation, although the role of methylation is in doubt. The frequency of CpG in the mouse genome is 12.5% of Escherichia coli, with unmethylated CpG occurring at similar to3% the frequency of E. coli. This suppression of CpG alone is insufficient to explain the inactivity of self DNA; vertebrate DNA was inactive at 100 mug/ml, 3000 times the concentration at which E. coli DNA activity was observed. We sought to resolve why self DNA does not activate macrophages. Known active CpG motifs occurred in the mouse genome at 18% of random occurrence, similar to general CpG suppression. To examine the contribution of methylation, genomic DNAs were PCR amplified. Removal of methylation from the mouse genome revealed activity that was 23-fold lower than E. coli DNA, although there is only a 7-fold lower frequency of known active CpG motifs in the mouse genome. This discrepancy may be explained by G-rich sequences such as GGAGGGG, which potently inhibited activation and are found in greater frequency in the mouse than the E. coli genome. In summary, general CpG suppression, CpG methylation, inhibitory motifs, and saturable DNA uptake combined to explain the inactivity of self DNA. The immunostimulatory activity of DNA is determined by the frequency of unmethylated stimulatory sequences within an individual DNA strand and the ratio of stimulatory to inhibitory sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.