179 resultados para Immunopathology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL) characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts). We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1), which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hard remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background An estimated 10–20 million individuals are infected with the retrovirus human T-cell leukemia virus type 1 (HTLV-1). While the majority of these individuals remain asymptomatic, 0.3-4% develop a neurodegenerative inflammatory disease, termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP results in the progressive demyelination of the central nervous system and is a differential diagnosis of multiple sclerosis (MS). The etiology of HAM/TSP is unclear, but evidence points to a role for CNS-inflitrating T-cells in pathogenesis. Recently, the HTLV-1-Tax protein has been shown to induce transcription of the human endogenous retrovirus (HERV) families W, H and K. Intriguingly, numerous studies have implicated these same HERV families in MS, though this association remains controversial. Results Here, we explore the hypothesis that HTLV-1-infection results in the induction of HERV antigen expression and the elicitation of HERV-specific T-cells responses which, in turn, may be reactive against neurons and other tissues. PBMC from 15 HTLV-1-infected subjects, 5 of whom presented with HAM/TSP, were comprehensively screened for T-cell responses to overlapping peptides spanning HERV-K(HML-2) Gag and Env. In addition, we screened for responses to peptides derived from diverse HERV families, selected based on predicted binding to predicted optimal epitopes. We observed a lack of responses to each of these peptide sets. Conclusions Thus, although the limited scope of our screening prevents us from conclusively disproving our hypothesis, the current study does not provide data supporting a role for HERV-specific T-cell responses in HTLV-1 associated immunopathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS) and nonsynonimous (dN) substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS > 1) and 8 under significant purifying selection (dN/dS < 1). We found several polymorphic amino acid coding sites in the envelope (15), NS1 (17), NS2A (11), and NS5 (24) genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Th17 cells have emerged as a proinflamatory cell type with strong links to autoimmunity and immunopathology. The aims of this thesis are two-fold; Firstly, generation of a novel mouse model that allows in vivo and/or ex vivo observation and manipulation of Th17 cells. Secondly, to generate a mouse model capable of conditionally overexpressing the hallmark Th17 cytokine, IL-17A. Given the expertise and experience in our lab with respect to conditional gene targeting, Cre-LoxP-mediated approaches were chosen and utilized to achieve this goal in both mouse models. The resulting strains and the knowledge generated from their useage are discussed in this work. Furthermore, the recently generated IL-6Rα conditional allele allows for ablation of IL-6 signaling in a cell type-specific manner. We wanted to analyze the role of IL-6 signaling with respect to EAE pathogenesis and development of pathogenic Th17 cells, and the results generated are published in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin-inhibitor refractory bronchiolitis obliterans (BO) represents the leading cause of late graft failure after lung transplantation. T helper (Th)2 and Th17 lymphocytes have been associated with BO development. Taking advantage of a fully allogeneic trachea transplantation model in mice, we addressed the pathogenicity of Th cells in obliterative airway disease (OAD) occurring in cyclosporine A (CsA)-treated recipients. We found that CsA prevented CD8+ T cell infiltration into the graft and downregulated the Th1 response but affected neither Th2 nor Th17 responses in vivo. In secondary mixed lymphocyte cultures, CsA dramatically decreased donor-specific IFN-γ production, enhanced IL-17 production and did not affect IL-13. As CD4+ depletion efficiently prevented OAD in CsA-treated recipients, we further explored the role of Th2 and Th17 immunity in vivo. Although IL-4 and IL-17 deficient untreated mice developed an OAD comparable to wild-type recipients, a single cytokine deficiency afforded significant protection in CsA-treated recipients. In conclusion, CsA treatment unbalances T helper alloreactivity and favors Th2 and Th17 as coexisting pathways mediating chronic rejection of heterotopic tracheal allografts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptors recognize pathogen-associated molecular patterns of microbial origin, and ligand recognition results in the production of different immune mediators such as pro-inflammatory cytokines, interferon, reactive oxygen and nitrogen intermediates, and upregulation of costimmulatory molecules. As these receptors have a critical role in linking pathogen recognition to induction of inflammation and innate as well as adaptive immunity, there is tremendous interest in understanding how the tissue and cell-type expression of TLRs is regulated and its influence on the local innate immune response. While TLRs are well studied in humans and rodents, to date little is known about them in dogs. The purpose of this study was to develop canine specific antibodies against TLR2, 4, 5 and 9 that were used to measure relative expression of these TLRs in healthy and reactive canine mesenteric lymph nodes. All 8 rabbit sera (2 each for TLR2, 4, 5 and 9) were strongly positive in ELISA against the respective 2 peptides per TLR used for immunization. The purified antibodies selected specifically detected a protein band with an apparent size of approximately 70 kDa in lysates of canine PBMCs by Western blotting. Immunostaining was observed with purified antibodies against TLR4, 5 and 9, whereas for canine TLR2, staining was only observed with the unpurified antibodies. In the mesenteric lymph node of healthy dogs, the overall staining pattern was very similar for TLR4 and 5 with positive cells predominantly found in the internodular areas and lower part of the cortex. Compared to the TLR4 and 5, more cells stained positive for TLR9 especially in the lymphoid nodules. The reactive lymph nodes contained more TLR4 and 9 positive cells. Moreover, a shift of TLR-9 positive cells from the lymphoid follicles to the deep cortex and medullary cords was observed. Whereas TLR9 co-localized with CD79-positive areas, TLR4 and 5 antibodies stained cells primarily in the CD3-positive areas. All three TLR antibodies stained cells within the area that co-localized with lysozyme-positive cells. In conclusion, this study demonstrates that the antibodies generated against canine TLR 4, 5 and 9 identify the expression of these TLRs in formalin-fixed canine lymph nodes and demonstrate increased expression in reactive canine mesenteric lymph nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary fibroblast cultures of canine cranial (CCL) and caudal (CaCL) cruciate ligaments were stimulated with different apoptosis inducers with or without preincubation of the pancaspase inhibitor zVAD.fmk. In contrast to CaCL fibroblasts, fibroblasts from CCL were significantly more susceptible to apoptosis inducers of the intrinsic pathway like doxorubicin, cisplatin and nitric oxide (NO)-donors and to Fas ligand (FasL), an apoptosis inducer of the death receptor pathway. Apoptotic response to staurosporine and the peroxynitrite donor GEA was similar in both ligament fibroblasts. Stimulation with dexamethasone or TNFalpha could not induce apoptosis in CCL and CaCL fibroblasts, in spite of present TNFR1 and TNFR2 receptors. zVAD.fmk was able to prevent apoptosis in up to 66% of CCL cells when treated with FasL, cisplatin or doxorubicin but it had no effect on NO or peroxynitrite induced apoptosis. In conclusion, differential susceptibility to apoptotic triggers like FasL or NO between cranial and caudal cruciate ligament fibroblasts in vitro may be a reflection of the different susceptibilities to degenerative rupture of the ligament. These findings indicate that a general caspase inhibition does not completely protect canine CCL cells from apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-beta1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.