996 resultados para Immunohistochemistry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first study to describe the association between expression of MUC1 and MUC2 mucins and prognosis in ovarian cancer. Paraffin sections of epithelial ovarian tumours (n=182: 29 benign, 21 low malignant potential, and 132 invasive tumours) were analysed immunohistochemically for expression of MUC1 and MUC2 mucin core proteins. Most benign, low malignant potential, and invasive tumours showed high MUC1 expression in the cytoplasm. Low cytoplasmic expression of MUC1 was a predictor for good prognosis, particularly within stage III tumours. A minority of benign epithelial tumours, but most low malignant potential and invasive non-mucinous tumours, showed high MUC1 expression on the cell membrane. High apical MUC1 reactivity was associated with non-mucinous tumours. Low expression of MUC1 in the apical membrane was associated with early stage and good outcome for invasive tumours. Most benign and low malignant potential tumours, but only a minority of invasive tumours, showed MUC2 expression. MUC2 was found in non-mucinous as well as in mucinous tumours. The presence of MUC2 was inversely associated with high tumour grade but was not associated with altered survival. These results support experimental evidence that MUC1 influences the metastatic ability of ovarian cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapeutic options for malignant pleural mesothelioma (MPM) are limited despite the increasing incidence globally. The vinca alkaloid vinorelbine exhibits clinical activity; however, to date, treatment optimization has not been achieved using biomarkers. BRCA1 regulates sensitivity to microtubule poisons; however, its role in regulating vinorelbine-induced apoptosis in mesothelioma is unknown. Here we demonstrate that BRCA1 plays an essential role in mediating vinorelbine-induced apoptosis, as evidenced by (1) the strong correlation between vinorelbine sensitivity and BRCA1 expression level; (2) induction of resistance to vinorelbine by BRCA1 using siRNA oligonucleotides; (3) dramatic down-regulation of BRCA1 following selection for vinorelbine resistance; and (4) the re-activation of vinorelbine-induced apoptosis following re-expression of BRCA1 in resistant cells. To determine whether loss of BRCA1 expression in mesothelioma was potentially relevant in vivo, BRCA1 immunohistochemistry was subsequently performed on 144 primary mesothelioma specimens. Loss of BRCA1 protein expression was identified in 38.9% of samples. Together, these data suggest that BRCA1 plays a critical role in mediating apoptosis by vinorelbine in mesothelioma, warranting its clinical evaluation as a predictive biomarker. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To compare proteins related to Alzheimer disease ( AD) in the frontal cortex and cerebellum of subjects with early-onset AD (EOAD) with or without presenilin 1 (PS1) mutations with sporadic late-onset AD ( LOAD) and nondemented control subjects. Methods: Immunohistochemistry, immunoblot analysis, and ELISA were used to detect and assess protein levels in brain. Results: In EOAD and to a lesser extent in LOAD, there was increased amyloid beta (Abeta) deposition (by immunohistochemistry), increased soluble Abeta (by immunoblot analysis), and specific increases in Abeta(40) and Abeta(42) ( by ELISA) in the frontal cortex and, in some cases, in the cerebellum. Surprisingly, immunoblot analysis revealed reduced levels of PS1 in many of the subjects with EOAD with or without PS1 mutations. In those PS1 mutation-bearing subjects with the highest Abeta, PS1 was barely, if at all, detectable. This decrease in PS1 was specific and not attributable solely to neuronal loss because amyloid precursor protein (APP) and the PS1-interacting protein beta-catenin levels were unchanged. Conclusions: This study shows that in the frontal cortex and cerebellum from Alzheimer disease patients harboring certain presenilin 1 mutations, high levels of amyloid beta are associated with low levels of presenilin 1. The study provides the premise for further investigation of mechanisms underlying the downregulation of presenilin 1, which may have considerable pathogenic and therapeutic relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin is the largest, and arguably, the most important organ of the body. It is a complex and multi-dimensional tissue, thus making it essentially impossible to fully model in vitro in conventional 2-dimensional culture systems. In view of this, rodents or pigs are utilised to study wound healing therapeutics or to investigate the biological effects of treatments on skin. However, there are many differences between the wound healing processes in rodents compared to humans (contraction vs. re-epithelialisation) and there are also ethical issues associated with animal testing for scientific research. Therefore, the development of skin equivalent (HSE) models from surgical discard human skin has become an important area of research. The studies in this thesis compare, for the first time, native human skin and the epidermogenesis process in a HSE model. The HSE was reported to be a comparable model for human skin in terms of expression and localisation of key epidermal cell markers. This validated HSE model was utilised to study the potential wound healing therapeutic, hyperbaric oxygen (HBO) therapy. There is a significant body of evidence suggesting that lack of cutaneous oxygen results in and potentiates the chronic, non-healing wound environment. Although the evidence is anecdotal, HBO therapy has displayed positive effects on re-oxygenation of chronic wounds and the clinical outcomes suggest that HBO treatment may be beneficial. Therefore, the HSE was subjected to a daily clinical HBO regime and assessed in terms of keratinocyte migration, proliferation, differentiation and epidermal thickening. HBO treatment was observed to increase epidermal thickness, in particular stratum corneum thickening, but it did not alter the expression or localisation of standard epidermal cell markers. In order to elucidate the mechanistic changes occurring in response to HBO treatment in the HSE model, gene microarrays were performed, followed by qRT-PCR of select genes which were differentially regulated in response to HBO treatment. The biological diversity of the HSEs created from individual skin donors, however, overrode the differences in gene expression between treatment groups. Network analysis of functional changes in the HSE model revealed general trends consistent with normal skin growth and maturation. As a more robust and longer term study of these molecular changes, protein localisation and expression was investigated in sections from the HSEs undergoing epidermogenesis in response to HBO treatment. These proteins were CDCP1, Metallothionein, Kallikrein (KLK) 1 and KLK7 and early growth response 1. While the protein expression within the HSE models exposed to HBO treatment were not consistent in all HSEs derived from all skin donors, this is the first study to detect and compare both KLK1 and CDCP1 protein expression in both a HSE model and native human skin. Furthermore, this is the first study to provide such an in depth analysis of the effect of HBO treatment on a HSE model. The data presented in this thesis, demonstrates high levels of variation between individuals and their response to HBO treatment, consistent with the clinical variation that is currently observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0-22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2-13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC. © 2004 Wichtig Editore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. Methods: TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB 2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results: TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB 2levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion: TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC. © 2011 Cathcart et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced/absent in human NSCLC protein samples (P <.0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P =.004) and in male patients (P <.05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P <.001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. © 2011 American Cancer Society.