996 resultados para Immunohistochemistry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgen deprivation causes the rat ventral prostate to reduce to 10% of its original size by 21 days after castration. The regressive changes result from the loss of epithelial cells by apoptosis and marked reorganization of the stroma. We have investigated whether these changes are accompanied by variations in heparanase expression. The ventral prostate of castrated rats was collected and processed for the quantification of heparan sulfate (HS), for the measurement of heparanase expression and its localization by reverse transcription/polymerase chain reaction, Western blotting, and immunohistochemistry, and for transmission electron microscopy (TEM). Absolute HS content decreased significantly as early as day 7 after surgery. Heparanase mRNA peaked 7 days after castration. The heparanase proenzyme (65 kDa) and the active form (50 kDa) were identified and peaked on day 7 after castration; this coincided with maximum HS-degrading activity. Heparanase was located to the basolateral surface of epithelial cells and in the adjacent stroma. After castration, staining for heparanase was reduced in the epithelium and increased in the stroma. TEM revealed that the peak of heparanase expression at day 7 after castration was associated with extensive changes in the basement membrane of the epithelium, endothelium and smooth muscle cells involving cell shrinkage and/or deletion by apoptosis. These results suggest that heparanase expression increases after castration and correlates with a decreased amount of HS. This variation in heparanase expression is involved in tissue remodeling and in the control of the regressive pattern after 1 week of androgen deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the acaricides, rotenone and oxalic acid (OA) on salivary glands of honeybee larvae were evaluated. Immunohistochemical methods were used to detect cell death and heat-shock protein (HSP70 and 90) localizations. Heat-shock proteins (HSP70 and 90) were localized in the cytoplasm and/or the nuclei of secretory gland cells, both under stress and in normal conditions. In rotenone-treated larvae, there were no changes in the normal level of cell death and also there were no morphological alterations in the secretory cells. In the larvae treated with oxalic acid, the salivary gland showed varying degrees of morphological cellular alteration and an increase in the cell death level. The present data suggest that stress-induced HSP70 might have an antiapoptotic effect while the stress-induced HSP90 might have a chaperone function in the larval salivary glands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Abundant biological data suggest that androgens play an important role in the development of the prostate cancer and other prostatic diseases. The objective of this work was to evaluate the effects of the testosterone supplementation in gerbil (a new experimental model) at different ages. Tissues from experimental animals were studied by histological and histochemistry procedures, androgen receptor immunohistochemistry assay, morphometric-stereological analysis, and transmission electron microscopy (TEM). After the treatment were observed increase of prostate weight and epithelium height in all ages studied. In some adult and aged treated animals, hyperplasic and displasic process were observed, including prostatic intraepithelial neoplasias and adenocarcinomas. Increase of the thickness of the smooth muscle cell (SMC) layer was observed in pubescent and adult animals and TEM revealed apparent SMC hypertrophy. An apparent increase in the frequency of blood vessels distributed by the subepithelial stroma in the treated animals was noticed. Reversion of the natural effects of aging on the prostate was observed in the aged treated animals in some acini of the gland. These data demonstrate that the gerbil prostate is susceptible to androgenic action at the studied ages and it can serve, for example, as experimental model to studies of prostate neoplasic process induction and hormonal therapy in aged animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective and design: To determine the expression pattern and distribution of the glucocorticoid-inducible protein annexin 1 (ANXA1) in a murine model of chronic granulomatous inflammation.Materials or subjects: TO Mouse.Treatment: Chronic granulomatous inflammation was induced by injecting into dorsal sub-cutaneous air-pouches in mice, a mixture of croton oil and Freund's complete adjuvant (CO/FCA).Methods: Western and northern analysis, corticosterone assay, and immunohistochemistry. Statistical analysis was performed using ANOVA followed by Tukey's pair-wise comparisons or Dunnett's multiple comparisons.Results: ANXA1 protein levels changed significantly throughout the 4-week time course, with an initial peak at day 7 and a later elevation at 28 days. ANXA1 mRNA levels peaked at days 1 and 3, with a significant decline at day 7 followed by an upward trend to day 28. Plasma corticosterone measurements taken throughout the time course revealed an increase from 14 days onward, suggesting that corticosterone does not influence ANXA1 expression during the initial stages of the model. Immunogold staining revealed that ANXA1 expression in the inflamed tissue was mainly in extravasated neutrophils, with intact protein (37 kDa) being predominantly observed on the cell membrane.Conclusions: the pattern of ANXA1 expression indicates that infiltrated neutrophils are responsible for the majority of ANXA1 present both at early and later stages of this model of granulomatous inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differently graded areas of human prostate adenocarcinoma were examined after Masson's trichrome staining or immunohistochemistry for smooth muscle alpha-actin, type IV collagen and laminin. In addition, the ultrastructure of the prostatic smooth muscle cells (SMC) during glandular proliferation and epithelial invasion in selected tumors was studied. The SMC formed a thick layer below the epithelial structures in unaffected areas and were closely associated with each other in homotypic interactions. As the tumor grade increased, the SMC gradually lost interactions with each other and became atrophic. With the growth of the epithelial compartment, the SMC initially segregated to the tumor periphery and the intercellular spaces increased. In high grade tumors, the epithelial cancer cells invaded the spaces between the SMC. Immunohistochemical analysis of the basal membrane revealed increased disruption of the usually thick basal membrane, which became thinner and faintly stained with each of the antibodies used. We conclude that most SMC become atrophic following epithelial invasion in human tumors and that degradation of the basal membrane is an important factor in this process. At the ultrastructural level, different SMC phenotypes occur in prostatic tissues during epithelial invasion. Interconversion between these phenotypes is suggested and a probable relationship among them is proposed.