326 resultados para Immunogenicity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunogenicity arises via many synergistic mechanisms, yet the overall dissimilarity of pathogenic proteins versus the host proteome has been proposed as a key arbiter. We have previously explored this concept in relation to Bacterial antigens; here we extend our analysis to antigens of viral and fungal origin. Sets of known viral and fungal antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we could not determine a threshold able meaningfully to separate non-antigen from antigen. We conclude that viral and fungal antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to mammalian genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. Areas covered: This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. Expert opinion: SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our attempts to thwart the unwanted attentions of microbes by prophylactic and therapeutic vaccination, the knowledge of interactions at the molecular level may prove to be an invaluable asset. This article examines how particulate delivery systems such as liposomes and polymer microspheres can be applied in the light of recent advances in immunological understanding. Some of the biological interactions of these delivery systems are discussed with relevance for antigen trafficking and molecular pathways of immunogenicity and emphasis on the possible interaction of liposomal components. In particular, traditional concepts such as antigen protection, delivery to antigen presenting cells and depot formation remain important aspects, whilst the inclusion of selected co-adjuvants and enhanced delivery of these moieties in conjunction with antigen now has a firm rationale. © 2006 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based additive method is a recently developed bioinformatic approach for predicting class II peptide−MHC binding affinity. The ISC−PLS method overcomes many of the conceptual difficulties inherent in the prediction of class II peptide−MHC affinity, such as the binding of a mixed population of peptide lengths due to the open-ended class II binding site. The method has applications in both the accurate prediction of class II epitopes and the manipulation of affinity for heteroclitic and competitor peptides. The method is applied here to six class II mouse alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek) and included peptides up to 25 amino acids in length. A series of regression equations highlighting the quantitative contributions of individual amino acids at each peptide position was established. The initial model for each allele exhibited only moderate predictivity. Once the set of selected peptide subsequences had converged, the final models exhibited a satisfactory predictive power. Convergence was reached between the 4th and 17th iterations, and the leave-one-out cross-validation statistical terms - q2, SEP, and NC - ranged between 0.732 and 0.925, 0.418 and 0.816, and 1 and 6, respectively. The non-cross-validated statistical terms r2 and SEE ranged between 0.98 and 0.995 and 0.089 and 0.180, respectively. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made freely available online (http://www.jenner.ac.uk/MHCPred).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of antimicrobial peptides and proteins as potential therapeutic agents in the management of multi-drug resistant infections is considered an attractive concept especially since such compounds should theoretically have low immunogenicity, high bioavailability with negligible toxicity. In this study we investigated the potential of developing a dry powder inhaler formulation of lactoferrin (a multifunctional iron binding protein). To achieve this, the protein was spray dried from a water only feedstock with suitably adjusted spray drying parameters. The particle size, degree of crystallinity, moisture content and yield of the spray dried powders along with the minimum bactericidal concentration (MBC) against Pseudomonas aeruginosa strain PAO1, were assessed. Dry powder inhaler formulations were prepared, and in vitro assessment studies using the multistage impinger were carried out to assess the aerosolisation performance of the formulations. Data obtained indicate that spray dried lactoferrin retains activity against biofilms and may be successfully employed in the treatment of chronic airway infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.

A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.

The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.

To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: To explore the activity of dasatinib alone and in combination with gemcitabine and docetaxel in uterine leiomyosarcoma (uLMS) cell lines, and determine if dasatinib inhibits the SRC pathway. METHODS: SK-UT-1 and SK-UT-1B uLMS cells were treated with gemcitabine, docetaxel and dasatinib individually and in combination. SRC and paxcillin protein expression were determined pre- and post-dasatinib treatment using Meso Scale Discovery (MSD) multi-array immunogenicity assay. Dose-response curves were constructed and the coefficient of drug interaction (CDI) and combination index (CI) for drug interaction calculated. RESULTS: Activated phosphorylated levels of SRC and paxillin were decreased after treatment with dasatinib in both cell lines (p < 0.001). The addition of a minimally active concentration of dasatinib (IC25) decreased the IC50 of each cytotoxic agent by 2-4 fold. The combination of gemcitabine-docetaxel yielded a synergistic effect in SK-UT-1 (CI = 0.59) and an antagonistic effect in SK-UT-1B (CI = 1.36). Dasatinib combined with gemcitabine or docetaxel revealed a synergistic anti-tumor effect (CDI < 1) in both cell lines. The triple drug combination and sequencing revealed conflicting results with a synergistic effect in SK-UT-1B and antagonistic in SK-UT-1. CONCLUSION: Dasatinib inhibits the SRC pathway and yields a synergistic effect with the two-drug combination with either gemcitabine or docetaxel. The value of adding dasatinib to gemcitabine and docetaxel in a triple drug combination is uncertain, but may be beneficial in select uLMS cell lines. Based on our pre-clinical data and known activity of gemcitabine and docetaxel, further evaluation of dasatinib in combination with these agents for the treatment of uLMS is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delivery of large molecular weight biological molecules to the epidermis and dermis is constrained by the tough outer layer of the epidermis, the stratum corneum (sc). Microneedle technologies attempt to overcome this physical barrier using sharp micron-size projections to penetrate the sc. Dissolvable microneedles (DMN), are a particular microneedle design whereby the needle structure is composed of a soluble matrix that upon application to the skin, dissolves releasing the vaccine load into skin. This thesis examines (1) the formulation and processing considerations around DMN fabrication, (2) the immunogenicity of DMN containing trivalent influenza vaccine (TIV) in pre-clinical mouse and pig models and (3) the thermostability of these DMN formulations during storage. The results demonstrate the importance of formulation for microneedle formation and mechanical strength. Trehalose and polyvinylalcohol based formulations produced optimal microneedle structures and were amenable to piezoelectric dispensing; allowing for precise multi-layered DMN to be fabricated. The effect of drying conditions was assessed and found to be critical for DMN mechanical strength and skin penetration. The antibody responses to TIV generated by DMN-mediated vaccination were comparable or greater to those induced by immunization with a commercial TIV via the IM route in mice. DMN mediated immunisation resulted in a significantly broader humoral response to heterotypic influenza viruses compared to IM delivery. Stored at 40°C, a licensed seasonal influenza vaccine incorporated into DMN array was thermostable for at least 6 month as determined by Single Radial Immunodiffusion and immunogenicity in mice. The thesis advances the field of DMN influenza vaccination by elucidating important processing and formulation considerations in the fabrication of highly reproducible DMN. It also demonstrated that DMN can induce broader, larger humoral responses than conventional IM administration while demonstrating enhanced accelerated stability. Crucially, this works advances an automated fabrication system that will allow for clinical translation of DMN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host's immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les travaux effectués au cours de ce mémoire ont permis de développer une alternative aux vaccins présentement utilisés contre le virus de l’influenza. Nous avons utilisé la nucléoprotéine (NP) de l’influenza comme base vaccinale puisque cette protéine est conservée chez les souches d’influenza A et qu’elle possède un potentiel de protection croisée. Nous avons montré que la multimérisation de la NP grâce à un gabarit d’ARN permet d’augmenter son immunogenicité. Cette multimérisation en pseudo-nucléoparticule virale (NLP) a augmenté la réponse humorale et cellulaire spécifique à NP et l’ajout d’un adjuvant (PAL) a permis d’amplifier davantage la réponse humorale contre NP. Une dose du vaccin candidat NLP-PAL n’a pas réussi à protéger des souris contre une infection létale avec une souche homotypique d’influenza. Cependant, des résultats avec un régime de deux immunisations montrent des résultats encourageants qui permettent d’espérer une protection envers une infection virale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les antigènes testiculaires du cancer sont des cibles idéales pour l’immunothérapie du cancer car ce sont des protéines immunogéniques dont l’expression est restreinte aux cellules germinales et au cancer. Le but de cette étude est d’évaluer le potentiel de MAGE-A11, un antigène testiculaire du cancer, comme cible pour développer un vaccin contre le cancer de la prostate. Pour ce faire, l’anticorps monoclonal 5C4 qui a la capacité de reconnaître la présence de MAGE-A11 dans les tissus fixés et inclus en paraffine a été produit. De plus, l’expression de MAGE-A11 a été analysée sur plusieurs lignées de cellules cancéreuses. Il a été démontré que MAGE-A11 est exprimé dans plusieurs types de cancers notamment dans le cancer du côlon et du cerveau. Finalement, nous avons identifié trois épitopes du CMH classe II HLA-DR1 dans la protéine MAGE-A11 confirmant ainsi l’immunogénicité de cet antigène et son potentiel comme cible pour l’immunothérapie du cancer.