941 resultados para Immune System Diseases


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crotalus durissus terrificus venom and its main component, crotoxin (CTX), have the ability to down-modulate the immune system. Certain mechanisms mediated by cells and soluble factors of the immune system are responsible for the elimination of pathogenic molecules to ensure the specific protection against subsequent antigen contact. Accordingly, we evaluated the immunomodulatory effects of CTX on the immune response of mice that had been previously primed by immunisation with human serum albumin (HSA). CTX inoculation after HSA immunisation, along with complete Freund`s adjuvant (CFA) or Aluminium hydroxide (Alum) immunisation, was able to suppress anti-HSA IgG1 and IgG2a antibody production. We showed that the inhibitory effects of this toxin are not mediated by necrosis or apoptosis of any lymphoid cell population. Lower proliferation of T lymphocytes from mice immunised with HSA/CFA or HSA/Alum that received the toxin was observed in comparison to the mice that were only immunised. In conclusion, CTX is able to exert potent inhibitory effects on humoural and cellular responses induced by HSA immunisation, even when injected after an innate immune response has been initiated. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and costicosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Oxidized lipoproteins and antioxidized low-density lipoprotein (anti-oxLDL) antibodies (Abs) have been detected in plasma in response to blood pressure (BP) elevation, suggesting the participation of the adaptive immune system. Therefore, treatment of hypertension may act on the immune response by decreasing oxidation stimuli. However, this issue has not been addressed. Thus, we have here analyzed anti-oxLDL Abs in untreated (naive) hypertensive patients shortly after initiation of anti hypertensive therapeutic regimens. METHODS Titers of anti-oxLDL Abs were measured in subjects with recently diagnosed hypertension on stage 1 (n = 94), in primary prevention of coronary disease, with no other risk factors, and naive of anti hypertensive medication at entry. Subjects were randomly assigned to receive perindopril, hydrochlorothiazide (HCTZ), or indapamide (INDA) for 12 weeks, with additional perindopril if necessary to achieve BP control. Abs against copper-oxidized LDL were measured by enzyme-linked immunosorbent assay. RESULTS Twelve-week antihypertensive treatment reduced both office-based and 24-h ambulatory BP measurements (P < 0.0005). The decrease in BP was accompanied by reduction in thiobarbituric acid-reactive substances (TBARS) (P < 0.05), increase in anti-oxLDL Ab titers (P < 0.005), and improvement in flow-mediated dilation (FMD) (P < 0.0005), independently of treatment. Although BP was reduced, we observed favorable changes in anti-oxLDL titers and FMD. CONCLUSIONS We observed that anti-oxLDL Ab titers increase after antihypertensive therapy in primary prevention when achieving BP targets. Our results are in agreement with the concept that propensity to oxidation is increased by essential hypertension and anti-oxLDL Abs may be protective and potential biomarkers for the follow-up of hypertension treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade I PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel approach of applying both positive selection and negative selection to supervised learning for anomaly detection. It first learns the patterns of the normal class via co-evolutionary genetic algorithm, which is inspired from the positive selection, and then generates synthetic samples of the anomaly class, which is based on the negative selection in the immune system. Two algorithms about synthetic generation of the anomaly class are proposed. One deals with data sets containing a few anomalous samples; while the other deals with data sets containing no anomalous samples at all. The experimental results on some benchmark data sets from UCI data set repertory show that the detection rate is improved evidently, accompanied by a slight increase in false alarm rate via introducing novel synthetic samples of the anomaly class. The advantages of our method are the increased ability of classifiers in identifying both previously known and innovative anomalies, and the maximal degradation of overfitting phenomenon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background
Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.
Results
We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.
Conclusion
This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87 ± 0.24 and 1.02 ± 0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.